Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Poly(styrene-co-acrylonitrile) (SAN) was found to be miscible with the tetraglycidylether of 4,4'-diaminodiphenylmethane (TGDDM), as shown by the existence of a single glass transition temperature (T g) over the whole composition range. However, SAN was found to be immiscible with the 4,4′-diaminodiphenylmethane (DDM)-cured TGDDM. Dynamic mechanical analysis (DMA) shows that the DDM-cured TGDDM/SAN blends have two T gs. A scanning electron microscopy (SEM) study revealed that all the DDM-cured TGDDM/SAN blends have a two-phase structure. The fracture toughness K IC of the blends increased with SAN content and showed a maximum at 10 wt% SAN content, followed by a dramatic decrease for the cured blends containing 15 wt% SAN or more. The SEM investigation of the K IC fracture surfaces indicated that the toughening effect of the SAN-modified epoxy resin was greatly dependent on the morphological structures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1383-1392 
    ISSN: 0887-6266
    Keywords: phenolphthalein poly(ether ether sulfone) ; poly(ethylene oxide) ; semicrystalline polymer blends ; miscibility ; phase separation ; thermal properties ; LCST behavior ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The miscibility of blends of phenolphthalein poly(ether ether sulfone) (PES-C) and poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. Differential scanning calorimetry (DSC) studies showed that the PES-C/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed a single, composition-dependent glass transition temperature (Tg), and thus that PES-C and PEO are miscible in the amorphous state at all compositions at lower temperature. At higher temperature, the blends underwent phase separation, and the PES-C/PEO blend system was found to display a lower critical solution temperature (LCST) behavior. The phase separation process in the blends has also been investigated by using DSC. Annealed at high temperatures, the PES-C/PEO blends exhibited significant changes of thermal properties, such as the enthalpy of crystallization and fusion, temperatures of crystallization and melting, depending on blend composition when phase separation occurred. These changes reflect different characteristics of phase structure in the blends, and were taken as probes to determine phase boundary. From both the thermal analysis and optical microscopy, the phase diagram of the blend system was established. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1383-1392, 1997
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 60 (1996), S. 807-813 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly (ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK is partially miscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two Tgs were observed for the 50/50 blend of phenoxy with the coplymer containing 17 mol % EEK, whereas a single composition-dependent Tg appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...