Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Si3N4/carbon fiber composites were fabricated using several types of fiber. All the composites had higher fracture toughness compared with monolithic Si3N4 ceramics. Tribological properties were investigated by a ball-on-disk method under unlubricated conditions. The composite containing fibers with a high orientation of graphite layers and high graphite content indicated a low friction coefficient. It was identified, by Raman spectroscopy, that graphite was transferred from the composite to the Si3N4 ball of the counterbody during the wear test. This transferred layer was effective for producing the low friction behavior of the composite.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Si3N4/carbon fiber composites have been produced with and without seeding by an extrusion and sintering process. In both cases the carbon fibers were aligned along the direction of extrusion, but the Si3N4 grains were only aligned in the seeded material. The mechanical properties of the specimens showed anisotropy with respect to the grain alignment, with both strength and toughness being highest in the direction parallel to the extruding direction. In this direction the seeded specimen, where both the Si3N4 grains and the carbon fibers were aligned, showed both higher fracture toughness and higher fracture strength than the nonseeded specimen where only the fibers were aligned.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Si3N4 powders were sintered using a 28 GHz gyrotron source, with Y2O3, Al2O3, and MgO as sintering aids, in an attempt to investigate the effect of microwave radiation on densification behavior. The microwave-sintered samples were compared with identical samples produced by conventional pressureless sintering. The effect of sintering on the microstructural development and grain growth of the samples was assessed using scanning electron microscopy. Phase transformation behavior was assessed using X-ray diffractometry. In the microwave-sintered samples, densification and α→β transformation occurred at temperatures ∼200°C lower than those of the conventionally sintered samples. More importantly, at comparable stages of densification, the microstructures of the microwave-sintered and conventionally sintered samples were significantly different, with the microwave-sintered samples showing the development of elongated β grains at a much earlier stage of the α→β transformation. It was concluded that the effect of microwave radiation on sintering was not simply a decrease in sintering temperatures, but in possibly a different sintering mechanism, clearly related to localized heating within the grain-boundary phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: α-SiAlONs with equiaxed and elongated microstructures stabilized with Y2O3 and Lu2O3 were produced by hot pressing, and the phase structure and room- and high-temperature mechanical properties were assessed. Additional liquid added to the starting composition in the form of 5 wt% rare-earth monosilicate resulted in the formation of elongated microstructures and improvements in room-temperature strength and fracture toughness. The elongated grain growth was promoted by the additional liquid phase, which crystallized to form a secondary grain-boundary phase thought to be J′ (Re4Si2–xAlxO7+xN2–x). For the equiaxed and the elongated samples, those sintered with Lu2O3 showed higher hardness than the comparable Y2O3-sintered materials, and, at elevated temperature, the strength retention of the elongated Lu2O3 SiAlON was much higher than that of the Y2O3 sample, which was attributed to properties of the residual grain-boundary phase associated with the difference in the cationic radius of the stabilizing cation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The friction and wear properties of silicon nitride/carbon fiber composites have been assessed and compared with monolithic Si3N4. Three different types of composites have been produced; one in which both the Si3N4 grains and the carbon fibers were aligned, one in which only the fibers had alignment, and a third where both the grains and fibers had random orientation. The friction coefficients of all of the composites, following running in, were around 0.2–0.3, typically less than one-third of that of the monolithic material. However there was no significant difference in friction coefficient between the three different types of composite. The specific wear rates of all the materials decreased with sliding distance and those of the composites were lower than the monolithic material. Among the composites, the wear rate of the one with aligned fibers in a randomly oriented Si3N4 matrix showed no dependence on sliding direction relative to the fiber alignment, and the specific wear rates of these samples were similar to that of the randomly oriented fiber composite, indicating little effect of fiber alignment alone on the wear properties under the present testing conditions. However, the specific wear rate of the composite with both fiber and grain alignment showed directional dependence. Grain cracking was observed perpendicular to the sliding direction, and the Spara specimen, in which the sliding direction was parallel to the Si3N4 grain alignment, showed higher wear rates than the Sperp and N samples of this composite. Such cracks are perpendicular to the major axis of the grains in the Spara sample and are thought to lead to easier removal of grains following their cracking under the tensile stresses induced particularly during the running in period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A reaction-bonding process, which offers low sintering shrinkage and is a low-cost process, was applied to fabricate Y–α-SiAlON ceramics. The green compacts composed of Si, Y2O3, Al2O3, and AlN were nitrided and subsequently postsintered. Dense single-phase Y–α-SiAlON with elongated grain morphology could be achieved in the specimen postsintered at 1900°C. The material exhibited high hardness (1850 HV10) and high fracture toughness (5.1 MPa·m1/2).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two-phase α/β composites have been produced with a combination of high hardness, fracture toughness, and strength. Compared with a single-phase α-sialon, the composite showed around a twofold increase in both fracture toughness and bending strength, with only minimal reduction in hardness. Despite being a two-phase material, the optical properties of the composite were very good, showing transparency in sections of around 0.5 mm thickness. The optical properties were in fact better for the composite than for the single-phase α-sialon. Work to date on transparent sialons has focused on single-phase α-materials, which have inherently low fracture toughness unless elongated microstructures are developed. However, this microstructural development appears to adversely affect optical transparency. In this work it has been shown that good combination of mechanical properties can be achieved while maintaining optical transparency in two-phase composite sialons. The development of such materials should widen their range of application.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The influence of different rare-earth sintering additives (Y, Yb, Lu) on the wear properties of Si3N4 ceramics was investigated during sliding contact without lubricant. The kind of rare-earth additives was shown to have a significant effect on the wear behavior for contact sliding under the present testing conditions. Samples sintered with Y2O3 as the sintering additive showed evidence of fracture type wear although this was not observed in samples sintered with Yb2O3 and Lu2O3. These smaller rare earths lead to higher grain boundary bonding strength and superior high-temperature properties and resulted in higher wear resistance. These results showed that the wear properties of Si3N4 ceramics could be tailored by judicious selection of the sintering additives.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The tribological behavior of monolithic Si3N4 and a Si3N4/carbon fiber composite has been assessed under high load and low speeds in an aqueous environment. The results showed that the friction coefficient of the Si3N4 was not significantly reduced when compared with dry sliding, and this was attributed to the failure to maintain a lubricating layer between the solid–solid surfaces. In the case of the composite, the initial high friction coefficient was reduced shortly after the beginning of the wear test and maintained a low value (about 0.03) throughout. This was attributed to the solid lubricating effect of the composite resulting in lower stress at the contact asperities, preventing the removal of the lubricating layer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Novel Lu-α-SiAlON ceramics were produced by hot pressing mixtures of Si3N4, Lu2O3, AlN, and Al2O3 at 1950°C for 2 h in a nitrogen atmosphere. The resultant SiAlON was fully dense and possessed a uniform, equiaxed microstructure with a grain size of ∼1 μm, which resulted in a high hardness of 〉19 GPa. In addition to high hardness, the sample showed very high optical transparency in the visible light region, with 〉70% transmission at higher wavelengths. This high transparency was attributed to the uniform, dense microstructure and lack of residual grain-boundary phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...