Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 161-163 (July 1998), p. 285-290 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 32-33 (Jan. 1991), p. 415-419 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Lu2O3 and SiO2 were used as sintering additives and rod-like β-Si3N4 seeds were added toenhance β-Si3N4 grain unidirectional growth. Silicon nitride ceramics were prepared by tape castingand gas pressure sintering[removed info]at 1950oC in 10 atm nitrogen atmosphere for 6 h. Compare to the no-seededSi3N4, the seeded and tape-cast Si3N4 ceramics have obvious anisotropic microstructure andanisotropic properties. When a stress applied along with the grain alignment direction, the bendingstrength of the seeded and tape-cast Si3N4 at 1500oC was 738 MPa, which was almost the same as itsroom temperature bending strength. However, the bending strength of the seeded and tape-cast atroom temperature was 556 MPa (perpendicular direction); and their thermal conductivity were 67W/m·K (perpendicular direction) and 83 W/m·K (parallel direction), respectively. The anisotropicproperties of the seeded and tape-cast Si3N4 were attributable to the elongated Si3N4 grain alignment
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 317-318 (Aug. 2006), p. 619-622 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A bundle of feedrod composed of ordinary arranged alumina and zirconia green rods wasco-extruded through a 6:1 reduction die. The volume fraction of zirconia phase was varied from 10to 88 vol%. After the first co-extrusion, the individual pieces were bundled and co-extruded again,reducing the lateral size of each phase and multiplying the number of continuous monofilaments.After a 3rd extrusion step and sintering at 1600oC, crack-free composites with a fiber diameter of ~50μm were obtained for all compositions. The fracture toughness of the composites was improved byintroducing fine second phase filaments into the matrix. The maximum fracture toughness of 6.2MPa[removed info]m1/2 was attained in the 3rd co-extruded composite which consisted of 53 vol% alumina and 47vol% zirconia. Bending strength of the composites was almost the same as that of the monolithicalumina regardless of the composition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 317-318 (Aug. 2006), p. 857-860 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Reaction bonded MgSiN2 (RBMSN) was prepared by direct nitridation of aSi/Mg2Si/Mg/Si3N4 powder compact in a temperature range of 1350-1550°C. The oxygen contentof MgSiN2 was in the range of 0.4 – 0.6 wt%. A thermal stability examination showed that MgSiN2is stable up to 1400°C at 0.1 MPa N2 pressure. The activation energy of decomposition calculatedfrom the temperature dependence of weight loss is [removed info]H = 383 kJ⋅mol-1. The time dependence andnitrogen pressure dependence of MgSiN2 decomposition was also investigated at constanttemperature. MgSiN2 is stable at 1560°C in 0.6 MPa nitrogen atmosphere. Using these experimentaldata together with the heat capacity published in a literature the Gibbs free energy of formation ofMgSiN2 was calculated in a temperature range 300-2500 K.Dense MgSiN2 ceramics or MgSiN2/Si3N4 composites with fluorine-based additives wereprepared by hot pressing. The composite materials had a 4-point bending strength of 427 MPa andVickers hardness (HV1) of 20.8 GPa, respectively. The indentation fracture toughness was 5.3MPa.m1/2, due to the presence of elongated β-Si3N4 grains. The dielectric constant of dense reactionbonded MgSiN2 at 100 kHz was 9.5-10, while that of MgSiN2/Si3N4 composite in a wide range 50 –6000, depending on composition and heat treatment
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Si3N4/carbon fiber composites were fabricated using several types of fiber. All the composites had higher fracture toughness compared with monolithic Si3N4 ceramics. Tribological properties were investigated by a ball-on-disk method under unlubricated conditions. The composite containing fibers with a high orientation of graphite layers and high graphite content indicated a low friction coefficient. It was identified, by Raman spectroscopy, that graphite was transferred from the composite to the Si3N4 ball of the counterbody during the wear test. This transferred layer was effective for producing the low friction behavior of the composite.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The synthesis of magnesium silicon nitride (MgSiN2) by direct nitridation of a Si/Mg2Si/Mg/Si3N4 powder mixture is described. A nucleation period at 550°C and stepwise heat-treatment schedule up to 1350°C was adopted for the synthesis of MgSiN2 powder, based on TG-DTA measurements. The influence of the ratio of constituents on the final phase composition also has been studied. The content of magnesium and silicon in the starting powder should fulfill the conditions Mg2Si/Mg ≥ 3 and Si3N4/Sitot≥ 0.5 to obtain single-phase MgSiN2. The silicon particle size of 〈0.5 μm is preferable to decrease the time of nitridation. The oxygen content of as-synthesized powders is in the range 0.9–1.2 wt%. However, the oxygen content of MgSiN2 powder decreases further by the addition of 2 wt% CaF2 or 0.75 wt% carbon and reaching the lowest value of 0.45 wt% oxygen after carbothermal reduction in an alumina-tube furnace.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two-phase α/β composites have been produced with a combination of high hardness, fracture toughness, and strength. Compared with a single-phase α-sialon, the composite showed around a twofold increase in both fracture toughness and bending strength, with only minimal reduction in hardness. Despite being a two-phase material, the optical properties of the composite were very good, showing transparency in sections of around 0.5 mm thickness. The optical properties were in fact better for the composite than for the single-phase α-sialon. Work to date on transparent sialons has focused on single-phase α-materials, which have inherently low fracture toughness unless elongated microstructures are developed. However, this microstructural development appears to adversely affect optical transparency. In this work it has been shown that good combination of mechanical properties can be achieved while maintaining optical transparency in two-phase composite sialons. The development of such materials should widen their range of application.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: β-Si3N4 ceramics sintered with a series of rare-earth (RE = La, Nd, Gd, Y, Yb and Sc) oxide additives were fabricated by hot pressing and subsequent annealing. Their microstructures, lattice oxygen contents, and thermal conductivities were evaluated. Mean grain size increased, while lattice oxygen content decreased, and hence, thermal conductivity increased with decreasing ionic radius of the rare-earth element. In all cases, a marked change was observed in the order of ionic radius from La to Nd to Gd, and a little change was observed below them. Rare-earth oxide additives significantly influenced the thermal conductivity of β-Si3N4, unlike in the case of AlN.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Surface modification by ion implantation has been conducted to improve the tribological properties of a high-strength and high-fracture-toughness unidirectionally aligned silicon nitride (UA-SN). B+, N+, Si+, and Ti+ ions were implanted into the planes parallel and normal to the grain alignment of the UA-SN with a fluence of 2 × 1017 ions/cm2 at an energy of 200 keV. The ion implanted UA-SN showed a dramatic improvement in wear resistance. For example, the specific wear rate of the Si+-implanted specimen in the direction parallel to the grain alignment was reduced to a value of 3 × 10−10 mm2/N, equal to 1/20 of the unimplanted one. Cross-sectional transmission electron microscopy indicates the high wear resistance was attributed to the amorphous surface caused by the ion implantation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...