Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: oleosin ; gene expression ; seed development ; Arabidopsis thaliana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Oleosins are proteins associated with lipid bodies mainly synthesised during seed development. Using a subtractive hybridisation approach two new members of the oleosin gene family of Arabidopsis thaliana have been isolated. The quantitative and temporal expression patterns of both genes are found to be affected in the fus3 mutant defective in late embryogenesis. This pattern is interpreted as a molecular marker for a mutant specific developmental change from a seed maturation toa germination pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: late embryogenesis ; Arabidopsis thaliana ; fus3 ; lec1 ; abi3 mutants ; transcription factor ; MYB domain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two novel MYB genes (ATMYBR1 and ATMYBR2) were isolated from Arabidopsis thaliana. Binding to a conserved MYB recognition sequence is demonstrated for the ATMYBR1 protein. The expression of both genes is affected by the fus3, lec1 and abi3 mutations causing pleiotropic defects during late embryogenesis and seed maturation including the loss of dormancy and desiccation tolerance. The strong increase of the transcript levels of both MYB genes during very late stages of embryogenesis typically found in wild type is missing in the mutants. Furthermore, the expression of both MYB genes is developmentally regulated in vegetative tissues. The highly conserved repeats (R2 and R3) of the DNA binding MYB domain of both proteins represent chimeric structures combining features typical of plant and animal derived proteins. This demonstrates the existence of a distinct subfamily of animal-like MYB factors in plant genomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...