Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To elucidate the mechanisms underlying sensorimotor integration, we investigated modulation in the primary (SI) and secondary (SII) somatosensory cortices during the preparatory period of a self-initiated finger extension. Electrical stimulation of the right median nerve was applied continuously, while the subjects performed a self-initiated finger extension and were instructed not to pay attention to the stimulation. The preparatory period was divided into five sub-periods from the onset of the electromyogram to 3000 ms before movement and the magnetoencephalogram signals following stimulation in each sub-period were averaged. Multiple source analysis indicated that the equivalent current dipoles (ECDs) were located in SI and bilateral SII. Although the ECD moment for N20m (the upward deflection peaking at around 20 ms) was not significantly changed, that for P30m (the downward deflection peaking at around 30 m) was significantly smaller in the 0- to −500-ms sub-period than the −2000- to −3000-ms sub-period. As for SII, the ECD moment for the SII ipsilateral to movement showed no significant change, while that for the contralateral SII was significantly larger in the 0- to −500-ms sub-period than the −1500- to −2000-ms or −2000- to −3000-ms sub-period. The opposite effects of movement on SI and SII cortices indicated that these cortical areas play a different role in the function of the sensorimotor integration and are affected differently by the centrifugal process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Synchronization and desynchronization of the neural rhythm in the brain play an important role in the orchestration of perception, motor action and conscious experience. Based on the results of electrocorticographic and magnetoencephalographic (MEG) recordings, it has been considered that human rolandic oscillations originate in the anterior bank of the central sulcus (20-Hz rhythm) and the postcentral cortex (10-Hz rhythm): the 20-Hz oscillation is closely related to motor function, while the 10-Hz rhythm is attributed mainly to sensory function. To test whether the rolandic oscillations are functionally relevant to the motor cortical excitability, we examined effects of 1-Hz repetitive transcranial magnetic stimulation (rTMS) of the left primary motor cortex (M1) on movement-related changes of the rolandic oscillations in 12 normal subjects. MEG data recorded during brisk extension of the right index finger in two different sessions (with and without rTMS conditioning) were compared. Motor-evoked potential (MEP) of the right hand muscle was also measured before and after rTMS to assess the motor cortical excitability. We found that 1-Hz rTMS over M1 significantly reduced the movement-related rebound of the 20-Hz oscillation in association with decreased motor cortical excitability. In particular, movement-related rebound of the 20-Hz rhythm was closely tied with motor cortical excitability. These findings further strengthen the notion of functional relevance of 20-Hz cortical oscillation to motor cortical excitability. In the framework of previous studies, the decrease in movement-related rebound may be regarded as a compensatory reaction to the inhibited cortical activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The N1m component of the auditory evoked magnetic field in response to tones and complex sounds was examined in order to clarify whether the tonotopic representation in the human secondary auditory cortex is based on perceived pitch or the physical frequency spectrum of the sound. The investigated stimulus parameters were the fundamental frequencies (F0 = 250, 500 and 1000 Hz), the spectral composition of the higher harmonics of the missing fundamental sounds (2nd to 5th, 6th to 9th and 10th to 13th harmonic) and the frequencies of pure tones corresponding to F0 and to the lowest component of each complex sound. Tonotopic gradients showed that high frequencies were more medially located than low frequencies for the pure tones and for the centre frequency of the complex tones. Furthermore, in the superior–inferior direction, the tonotopic gradients were different between pure tones and complex sounds. The results were interpreted as reflecting different processing in the auditory cortex for pure tones and complex sounds. This hypothesis was supported by the result of evoked responses to complex sounds having longer latencies. A more pronounced tonotopic representation in the right hemisphere gave evidence for right hemispheric dominance in spectral processing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 16 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It has been suggested that visuospatial cognitive disabilities seen in children with Williams syndrome (WMS) are related to a dysfunction of the dorsal stream in the visual information analysis system. We investigated whether visual motion detection is also impaired in WMS because it is one of the main functions of the dorsal stream. Using various psychophysical examinations and magnetoencephalography, we studied a child with WMS who had the typical features of the syndrome. We found profound impairments in the visuospatial cognitions, as previously reported in WMS. In contrast, he had normal ability for the direction discrimination of coherent motion on a background of randomly moving dots, and he perceived apparent motion as do normal children. Furthermore, the latencies of both responses to the coherent and incoherent motions as measured by magnetoencephalography were within the mean ± 2 SD among normal adults and the estimated origins were near the human homologue of V5/MT (visual area 5/middle temporal area). The results indicate that the visuospatial cognitive deficits in WMS can occur without impairment of the visual motion detection. We consider that the deficits are caused by a restricted dysfunction of the neural groups for position and three-dimensional form perceptions in the dorsal stream of the visual system, though other possibilities are not excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 22 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The go/nogo task is a useful paradigm for recording event-related potentials (ERPs) to investigate the neural mechanisms of response inhibition. In nogo trials, a negative deflection at around 140–300 ms (N2), which has been called the ‘nogo potential’, is elicited at the frontocentral electrodes, compared with ERPs recorded in go trials. In the present study, we investigated the generators of nogo potentials by recording ERPs and by using magnetoencephalography (MEG) simultaneously during somatosensory go/nogo tasks to elucidate the regions involved in generating nogo potentials. ERP data revealed that the amplitude of the nogo-N140 component, which peaked at about 155 ms from frontocentral electrodes, was significantly more negative than that of go-N140. MEG data revealed that a long-latency response peaking at approximately 160 ms, termed nogo-M140 and corresponding to nogo-N140, was recorded in only nogo trials. The equivalent current dipole of nogo-M140 was estimated to lie around the posterior part of the inferior frontal sulci in the prefrontal cortex. These results revealed that both nogo-N140 and nogo-M140 evoked by somatosensory go/nogo tasks were related to the neural activity generated from the prefrontal cortex. Our findings combining MEG and ERPs clarified the spatial and temporal processing related to somato-motor inhibition caused in the posterior part of the inferior frontal sulci in the prefrontal cortex in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To investigate the processing of noxious stimuli within the primary somatosensory cortex (SI), we recorded magnetoencephalography following noxious epidermal electrical stimulation (ES) and innocuous transcutaneous electrical stimulation (TS) applied to the dorsum of the left hand. TS activated two sources sequentially within SI: one in the posterior bank of the central sulcus and another in the crown of the postcentral gyrus, corresponding to Brodmann's areas 3b and 1, respectively. Activities from area 3b consisted of 20- and 30-ms responses. Activities from area 1 consisted of three components peaking at 26, 36 and 49 ms. ES activated one source within SI whose location and orientation were similar to those of the TS-activated area 1 source. Activities from this source consisted of three components peaking at 88, 98 and 109 ms, later by 60 ms than the corresponding TS responses. ES and TS subsequently activated a similar region in the upper bank of the sylvian fissure, corresponding to the secondary somatosensory cortex (SII). The onset latency of the SII activity following ES (109 ms) was later by 29 ms than that of the first SI response (80 ms). Likewise, the onset latency of SII activity following TS (52 ms) was later by 35 ms than that of area 1 of SI (17 ms). Therefore, our results showed that the processing of noxious and innocuous stimuli is similar with respect to the source locations and activation timings within SI and SII except that there were no detectable activations within area 3b following noxious stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6792
    Keywords: Somatosensory evoked potentials ; Down's syndrome ; Scalp topography ; Mapping ; Significance probability mapping ; Gender difference
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The scalp topography of somatosensory evoked potentials (SEPs) following stimulation of the median and posterior tibial nerve of 39 patients with Down's syndrome was compared with that of age-matched normal controls using significance probability mapping (SPM). The maximal area of each potential in Down's syndrome was similar to that in normal controls, but the scalp distribution was wider. The amplitudes of all components, except the N45 and P59 potentials of the posterior tibial nerve SEPs, were greater in Down's syndrome, and the t values calculated by SPM were significantly greater. However, the difference of SEP maps between Down's patients and aged controls (over 65 years) was much smaller than that between Down's patients and age-matched controls. Therefore, we conclude that the generator sources and generating mechanisms of SEPs in Down's syndrome are not different from those of normal control, however SEP potentials in Down's syndrome are remarkably enhanced, resulting in a wider distribution, probably due to accelerated aging in Down's patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-6792
    Keywords: Magnetoencephalography ; Somatosensory stimulation ; Spatio-temporal source analysis ; Primary sensory cortex ; Second sensory cortex ; Posterior parietal cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We investigated the activation of posterior parietal cortex (PPC) to somatosensory stimulation in humans to determine its fundamental role as a somatosensory associated area using magnetoencephalography (MEG). We studied somatosensory evoked magnetic fields (SEF) after stimulation of median nerve, posterior tibial nerve and lip, and analyzed them by the single dipole model and also by the multidipole model using brain electric source analysis (BESA) system. In single source model analysis, the dipole at the peak latency of short-latency components following each site stimulation were located in the corresponding receptive fields in the primary somatosensory cortex (SI) contralateral to the stimulation. The dipole at the peak latency of the middle latency components were located in bilateral upper bank of Sylvian fissure (SII). By contrast, in the five-dipole model of BESA, the equivalent current dipoles (ECDs) of the middle-latency SEF after stimulation of median nerve and posterior tibial nerve were identified in the contralateral SI and in the bilateral SII and PPC, while all activities of middle-latency SEF after lip stimulation appeared to be restricted in the contralateral SI and bilateral SII. Around 80 msec in latency, the ECD location in PPC after median nerve stimulation was, on the average, 2.4 cm posterior, 2.9 cm medial and 2.6 cm superior to the hand area in SI. The ECD in PPC after posterior tibial nerve stimulation was also located posterior to the foot area in SI, but it was close to the SI area of foot, their distance being approximately 1.3 cm. ECD in PPC was almost equally demonstrated in each hemisphere. These findings suggested that the somatosensory associated cortex in PPC represented somatotopic organization in parallel with ‘homunculus’ in SI, but the hand area was much wider than the foot area. It was not clear whether the lip area in PPC was absent or was too close to be separated from the SI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6792
    Keywords: Pain ; Magnetoencephalography ; MEG ; Second sensory cortex ; Amygdalar nuclei ; Cingulate cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The temporal and spatial processing of pain perception in human was traced by magnetoencephalography (MEG). We applied a painful CO2 laser beam to the forearm of 11 normal subjects, and estimated the activated areas using a single equivalent current dipole (ECD) at each time point, and a brain electric source analysis (BESA) as a spatio-temporal multiple source analysis method. The four-source model was found to be the most appropriate; sources 1 and 2 at the secondary sensory cortex (SII) contralateral and ipsilateral to the stimulation, and sources 3 and 4 at the anterior medial temporal area (probably the amygdalar nuclei or hippocampal formation) contralateral and ipsilateral to the stimulation, respectively. Activities in all 4 areas were temporally overlapped. Activity in the primary sensory cortex (SI) contralateral to the stimulated site was not identified. Activity in the cingulate cortex was also not clearly identified. These results are probably due to one or more of the following factors; (1) the cingulate cortex is too deep, (2) the ECDs generated in the cingulate cortex are mainly oriented radially, and (3) the ECDs generated in bilateral hemispheres interfere with each other. No significant or consistent magnetic fields were recorded after 500 msec following the stimulation, probably due to the complicated spatial and temporal overlapping of activities in multiple areas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...