Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Bioactive compounds can be valuable research tools and drug leads, but it is often difficult to identify their mechanism of action or cellular target. Here we investigate the potential for integration of chemical-genetic and genetic interaction data to reveal information about the pathways and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 31 (1999), S. 49-56 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The yeast V-ATPase is highly similar to V-ATPases of higher organismsand has proved to be a biochemically and genetically accessible model formany aspects of V-ATPase function. Like other V-ATPases, the yeast enzymeconsists of a complex of peripheral membrane proteins, the V1sector, attached to a complex of integral membrane subunits, theV0 sector. Multiple pathways for biosynthetic assembly of theenzyme appear to be available to cells containing a full complement ofsubunits and enzyme activity may be further controlled during biosynthesis bya protease activity localized to the late Golgi apparatus. Surprisingly, theassembled V-ATPase is not a static structure. Instead, fully assembledV1V0 complexes appear to exist in a dynamic equilibriumwith inactive cytosolic V1 and membrane-bound V0complexes and this equilibrium can be rapidly shifted in response to changesin carbon source. The reversible disassembly of the yeast V-ATPase may be anovel regulatory mechanism, common to V-ATPases, that works in vivoin coordination with many other regulatory mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 31 (1999), S. 3-5 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 24 (1992), S. 383-393 
    ISSN: 1573-6881
    Keywords: V-type ATPase ; proton pump ; vacuole ; acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The yeast vacuole is acidified by a vacuolar proton-translocating ATPase (H+-ATPase) that closely resembles the vacuolar H+-ATPases of other fungi, animals, and plants. The yeast enzyme is purified as a complex of eight subunits, which include both integral and peripheral membrane proteins. The genes for seven of these subunits have been cloned, and mutant strains lacking each of the subunits (vma mutants) have been constructed. Disruption of any of the subunit genes appears to abolish the function of the vacuolar H+-ATPase, supporting the subunit composition derived from biochemical studies. Genetic studies of vacuolar acidification have also revealed an additional set of gene products that are required for vacuolar H+-ATPase activity, but may not be part of the final enzyme complex. The biosynthesis, assembly, and targeting of the enzyme is being elucidated by biochemical and cell biological studies of thevma mutants. Initial results suggest that the peripheral and integral membrane subunits may be independently assembled.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...