Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 17 (2003), S. 0 
    ISSN: 1460-9568
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Nerve fibre degeneration in the spinal cord is accompanied by astroglial proliferation. It is not known whether these cells proliferate in situ or are recruited from specific regions harbouring astroglial precursors. We found cells expressing nestin, characteristic of astroglial precursors, at the dorsal surface of the spinal cord on the operated side from 30 h after dorsal root injury. Nestin-expressing cells dispersed to deeper areas of the dorsal funiculus and dorsal horn on the operated side during the first few days after injury. Injection of bromodeoxyuridine (BrdU) 2 h before the end of the experiment, at 30 h after injury, revealed numerous BrdU-labelled, nestin-positive cells in the dorsal superficial region. In animals surviving 20 h after BrdU injection at 28 h postlesion, cells double-labelled with BrdU and nestin were also found in deeper areas. Labeling with BrdU 2 h before perfusion showed proliferation of microglia and radial astrocytes in the ventral and lateral funiculi on both sides of the spinal cord 30 h after injury. Nestin-positive cells coexpressed the calcium-binding protein Mts1, a marker for white matter astrocytes, in the dorsal funiculus, and were positive for glial fibrillary acidic protein (GFAP), but negative for Mts1 in the dorsal horn. One week after injury the level of nestin expression decreased and was undetectable after 3 months. Taken together, our data indicate that after dorsal root injury newly formed astrocytes in the degenerating white and grey matter first appear at the dorsal surface of the spinal cord from where some of them subsequently migrate ventrally, and differentiate into white- or grey-matter astrocytes.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1460-9568
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Functionally useful repair of the mature spinal cord following injury requires axon growth and the re-establishment of specific synaptic connections. We have shown previously that axons from peripherally grafted human embryonic dorsal root ganglion cells grow for long distances in adult host rat dorsal roots, traverse the interface between the peripheral and central nervous system, and enter the spinal cord to arborize in the dorsal horn. Here we show that these transplants mediate synaptic activity in the host spinal cord. Dorsal root ganglia from human embryonic donors were transplanted in place of native adult rat ganglia. Two to three months after transplantation the recipient rats were examined anatomically and physiologically. Human fibres labelled with a human-specific axon marker were distributed in superficial as well as deep laminae of the recipient rat spinal cord. About 36% of the grafted neurons were double labelled following injections of the fluorescent tracers MiniRuby into the sciatic and Fluoro-Gold into the lower lumbar spinal cord, indicating that some of the grafted neurons had grown processes into the spinal cord as well as towards the denervated peripheral targets. Electrophysiological recordings demonstrated that the transplanted human dorsal roots conducted impulses that evoked postsynaptic activity in dorsal horn neurons and polysynaptic reflexes in ipsilateral ventral roots. The time course of the synaptic activation indicated that the human fibres were non-myelinated or thinly myelinated. Our findings show that growing human sensory nerve fibres which enter the adult deafferentated rat spinal cord become anatomically and physiologically integrated into functional spinal circuits.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1573-7381
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5–8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...