Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Biochemistry 13 (1974), S. 1135-1139 
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1600-5775
    Quelle: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Thema: Geologie und Paläontologie , Physik
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Archives of environmental contamination and toxicology 32 (1997), S. 94 -98 
    ISSN: 1432-0703
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Energietechnik , Medizin
    Notizen: Abstract. In earlier studies (Boopathy et al. 1994a, 1994b), soil bacteria present in a TNT-contaminated site removed 2,4,6-trinitrotoluene (TNT). In this study the optimum conditions for the most efficient removal of TNT is discussed. The results suggest that the soil bacterial consortium has an optimal pH range of 6–7. Maximum growth was observed at pH 7. However, the TNT removal rate was higher at pH 6. Studies of the effects of temperature showed that the bacterial consortium had maximum metabolic activity at 20 to 22°C (ambient temperature). At a higher temperature (37°C) the TNT removal rate dropped significantly. The consortium could not use TNT as a nitrogen source but required the addition of ammonium. Optimal growth occurred with 0.25 g/L of ammonium chloride. Growing cells removed TNT significantly faster rates than resting cells or cell-free extract. The operation of soil slurry reactors with the optimal conditions suggested that TNT can be removed effectively from the contaminated sites. These environmental conditions established as optimal can be used to improve the efficiency of large-scale soil slurry reactors for the treatment of soil contaminated with TNT.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Applied microbiology and biotechnology 39 (1993), S. 270-275 
    ISSN: 1432-0614
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract A sulfate-reducing bacterium, Desulfovibrio sp. (B strain) isolated from an anaerobic reactor treating furfural-containing waste-water was studied for its ability to metabolize trinitrotoluene (TNT). The result showed that this isolate could transform 100 ppm TNT within 7 to 10 days of incubation at 37°C, when grown with 30 mm pyruvate as the primary carbon source and 20 mm sulfate as electron acceptor. Under these conditions, the main intermediate produced was 2,4-diamino-6-nitrotoluene. Under culture conditions where TNT served as the sole source of nitrogen for growth with pyruvate as electron donor and sulfate as electron acceptor, TNT was first converted to 2,4-diamino-6-nitrotoluene within 10 days of incubation. This intermediate was further converted to toluene by a reductive deamination process via triaminotoluene. Apart from pyruvate, various other carbon sources such as ethanol, lactate, formate and H2 + CO2 were also studied as potential electron donors for TNT metabolism. The rate of TNT biotransformation by Desulfovibrio sp. (B strain) was compared with other sulfate-reducing bacteria and the results were evaluated. This new strain may be useful in decontaminating TNT-contaminated soil and water under anaerobic conditions in conjunction with toluene-degrading denitrifiers (Pseudomonas spp.) or toluene-degrading sulfate reducers in a mixed culture system.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1432-0614
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract The impact of bioaugmentation on the efficacy of an existing microbial population to detoxify phenol in a laboratory-scale sequencing batch reactor was evaluated. Phenol degradation and the persistence and expression of the catabolic dmpN gene were studied for 44 days using a combination of conventional monitoring approaches and molecular techniques. Following addition of the phenol-degrading bacterium, Pseudomonas putida ATCC 11172, which converts phenol to catechol by the aerobic meta-cleavage pathway, phenol removal␣in the bioaugmented reactor increased and was maintained at 95 %–100 %. In the unaugmented control reactor, decreased phenol removal was observed. Correspondingly, dmpN DNA, characteristic of P. putida ATCC 11172, and its expression were detected in activated sludge biomass from the bioaugmented reactor for over 41 days. The results of this study show that (i) bioaugmentation provides stability in phenol degradation, and (ii) monitoring with molecular techniques such as the polymerase chain reaction (PCR) and reverse transcriptase/PCR can successfully assess the state of a bacterium used in bioaugmentation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Applied microbiology and biotechnology 47 (1997), S. 69-72 
    ISSN: 1432-0614
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract Three pure bacterial cultures degrading methyl t-butyl ether (MTBE) were isolated from activated sludge and fruit of the Gingko tree. They have been classified as belonging to the genuses Methylobacterium, Rhodococcus, and Arthrobacter. These cultures degraded 60 ppm MTBE in 1–2 weeks of incubation at 23–25 °C. The growth of the isolates on MTBE as sole carbon source is very slow compared with growth on nutrient-rich medium. Uniformly-labeled [14C]MTBE was used to determine 14CO2 evolution. Within 7 days of incubation, about 8% of the initial radioactivity was evolved as 14CO2. These strains also grow on t-butanol, butyl formate, isopropanol, acetone and pyruvate as carbon sources. The presence of these compounds in combination with MTBE decreased the degradation of MTBE. The cultures pregrown on pyruvate resulted in a reduction in 14CO2 evolution from [14C]MTBE. The availability of pure cultures will allow the determination of the pathway intermediates and the rate-limiting steps in the degradation of MTBE.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1432-0991
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract A sulfate-reducing bacterium (SRB),Desulfovibrio sp. (B strain), isolated from a continuous anaerobic digester (Boopathy and Daniels, Current Microbiology, 23:327–332, 1991) was found to use 2,4,6-trinitrotoluene (TNT) as sole nitrogen source. This bacterium also used nitrate, nitrite, and ammonium as nitrogen source. A long lag period was noticed when TNT or nitrite was used as nitrogen source. Nitrate, nitrite and TNT also served as electron acceptor in the absence of sulfate for this bacterium. Under nitrogen-limiting condition, 100% removal of TNT was observed within 8 days of incubation. The main intermediate observed was diaminonitrotoluene, which was further converted to toluene via triaminotoluene by reductive deamination process. Under nitrogen-rich conditions (presence of ammonium), TNT was converted to diaminonitrotoluene, and toluene was not produced. This isolate did not degrade TNT all the way to CO2. This study demonstrated the possibility of using this isolated to decontaminate the soil and water contaiminated with TNT under anaerobic conditions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...