Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key words Hordeum vulgare ; Two-rowed ; Six-rowed ; Quality traits ; Quantitative trait loci
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Characterization of the determinants of economically important phenotypes showing complex inheritance should lead to the more effective use of genetic resources. This study was conducted to determine the number, genome location and effects of QTLs determining malting quality in the two North American barley quality standards. Using a doubled-haploid population of 140 lines from the cross of Harrington×Morex, malting quality phenotype data sets from eight environments, and a 107-marker linkage map, QTL analyses were performed using simple interval mapping and simplified composite interval mapping procedures. Seventeen QTLs were associated with seven grain and malting quality traits (percentage of plump kernels, test weight, grain protein percentage, soluble/total protein ratio, α-amylase activity, diastatic power and malt-extract percentage). QTLs for multiple traits were coincident. The loci controlling inflorescence type [vrs1 on chromosome 2(2H) and int-c on chromosome 4(4H)] were coincident with QTLs affecting all traits except malt-extract percentage. The largest effect QTLs, for the percentage of plump kernels, test weight protein percentage, S/T ratio and diastatic power, were coincident with the vrs1 locus. QTL analyses were conducted separately for each sub-population (six-rowed and two-rowed). Eleven new QTLs were detected in the subpopulations. There were significant interactions between the vrs1 and int-c loci for grain-protein percentage and S/T protein ratio. Results suggest that this mating of two different germplasm groups caused a disruption of the balance of traits. Information on the number, position and effects of QTLs determining components of malting quality may be useful for maintaining specific allele configurations that determine target quality profiles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: marker-assisted selection ; genetics ; barley ; Hordeum vulgare ; scald ; Rhynchosporium secalis ; Canada
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The genetic basis of resistance to scald (Rhynchosporium secalis) within barley breeding populations is poorly understood. The design of effective genetically based resistance strategies is predicated on knowledge of the identity of the resistance genes carried by potential parents. The resistance exhibited by a broad selection of western Canadian barley lines was investigated by evaluating their reactions to five R. secalis isolates. Results were compared to the resistance exhibited by previously characterized lines. This comparison, combined with pedigree analysis indicated that there are two different resistance genes present inwwestern Canadian cultivars. These genes were shown to be independent through analysis of a segregating population derived from a cross between Falcon and CDC Silky. This evidence, along with observed linkage of the gene in CDC Silky with an allele specific amplicon developed for a Rhynchosporium secalis resistance locus on chromosome 3, provides evidence that the gene in Falcon is the Rh2 gene derived from Atlas, and the gene (s) in CDC Silky is located within the Rh/Rh3/Rh4 cluster and is similar to the Rh gene in Hudson.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...