Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Wheat ; Aegilops ventricosa ; Powdery mildew resistance ; Biochemical markers ; Addition and transfer lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The gene encoding a variant of alcohol dehydrogenase, Adh-μ, has been found to be associated with the chromosome of the Mv genome which is present in type 9 wheat/Aegilops ventricosa addition line, to which the genes for protein CM-4 and for a phosphatase variant, Aph-v, had been previously assigned. Transfer line H-93-33, which has 42 chromosomes and has been derived from the cross (Triticum turgidum x Ae. ventricosa) x T. aestivum, carries genes encoding all three biochemical markers. Linkage between these genes has been demonstrated by analysis of individual kernels of the F2 (H-93-33 x T. aestivum cv. “Almatense” H-10-15). A study of the hybrids of line H-93-33 with T. aestivum H-10-15 and with the 4DS ditelosomic line has confirmed that, as suspected, the linkage group corresponds to chromosome 4Mv from Ae. ventricosa. Additionally, it has been found that the previously reported resistance of line H-93-33 to powdery mildew (Erysiphe graminis) is also linked to the biochemical markers; this indicates that either the gene responsible for it is different from that in lines H-93-8 and H-93-35, or that a translocation between two different Mv chromosomes has occurred in line H-93-33.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Aegilops ventricosa ; DNA probes ; Introgression lines ; Addition lines ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Stable wheat-Aegilops introgression lines with 42 chromosomes (H-93), derived by repeated selfing from a cross (Triticum turgidum x Aegilops ventricosa) x T. aestivum, have been characterized using the following DNA probes and isozyme markers: (1) single or low-copy DNA fragments from Ae. ventricosa; (2) known cDNA probes corresponding to α1-thionin, monomeric α-amylase inhibitor, the CM3 subunit of tetrameric α-amylase inhibitor, and sucrose synthase from wheat; (3) anonymous cDNA probes from wheat that have been mapped by Sharp et al. (1989); (4) isozyme markers corresponding to aconitase, shikimate dehydrogenase, adenylate kinase, and endopeptidase. Meiotic metaphases of appropriate hybrids involving selected H-93 lines have been investigated by the Giemsa C-banding technique. The substitution of whole chromosomes [(5A) 5Mv; (4D) 4Mv; (5D) 5Mv; (7D) 7Mv] and chromosomal segments (1Mv; 3Mv; 5Mv; 7Mv) from the Mv genome of Aegilops ventricosa has been demonstrated. The distribution of selected markers among putative wheat-Ae. ventricosa addition lines has also been investigated. The 7Mv addition has been characterized for the first time, while the identity of the previously reported 5Mv and 6Mv additions has been confirmed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Wheat ; Aegilops ventricosa ; Erysiphe graminis f.sp. tritici ; Powdery mildew resistance ; Protein U-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Resistance to powdery mildew, caused by the fungus Erysiphe graminis f.sp. tritici, has been transferred from Aegilops ventricosa (genomes DvMv) to hexaploid wheat (Triticum aestivum, ABD). In two transfer lines, H-93-8 and H-93-35, the resistance gene was linked to a gene encoding protein U-1, whereas one line, H-93-33, was resistant but lacked the molecular marker, and another line, H-93-1, was susceptible but carried the gene for U-1, indicating that the original Mv chromosome from Ae. ventricosa, carrying the two genes, had undergone recombination with a wheat chromosome in the last two lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Wheat ; Aegilops ventricosa ; Heterodera avenae ; Cyst nematode ; Resistance gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transfer of resistance toHeterodera avenae, the cereal cyst nematode (CCN), by a “stepping-stone” procedure from the wild grassAegilops ventricosa to hexaploid wheat has been demonstrated. The number of nematodes per plant was lower, and reached a plateau much earlier, in the resistant introgression line H93-8 (1–2 nematodes per plant) than in the recipient H10-15 wheat (14–16 nematodes per plant). Necrosis (hypersensitive reaction) near the nematode, little cell fusion, and few, often degraded syncytia were observed in infested H93-8 roots, while abundant, well-formed syncytia were present in the susceptible H10-15 wheat. Line H93-8 was highly resistant to the two Spanish populations tested, as well as the four French races (Fr1-Fr4), and the British pathotype Hall, but was susceptible to the Swedish pathotypes HgI and HgIII. Resistance was inherited as though determined by a single quasi-dominant factor in the F2 generations resulting from crosses of H93-8 with H10-15 and with Loros, a resistant wheat carrying the geneCre1 (syn.Ccn1). The resistance gene in H93-8 (Cre2 orCcn2) is not allelic with respect to that in Loros. RFLPs and other markers, together with the cytogenetical evidence, indicate that theCre2 gene has been integrated into a wheat chromosome without affecting its meiotic pairing ability. Introduction ofCre2 by backcrossing into a commercial wheat backgroud increases grain yield when under challenge by the nematode and is not detrimental in the absence of infestation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Wheat ; Aegilops ventricosa ; Pseudocercosporella herpotrichoides ; Eyespot resistance ; Chromosome markers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hexaploid wheat line H-93-70 carries a gene (Pch-1) that has been transferred from the wild grass Aegilops ventricosa and confers a high degree of resistance to eyespot diesease, caused by the fungus Pseudocercosporella herpotrichoides. Crosses of the resistant line H-93-70 with the susceptible wheat Pané 247 and with a 7D/7Ag wheat/Agropyron substitution line were carried out and F2 kernels were obtained. The kernels were cut transversally and the halves carrying the embryos were used for the resistance test, while the distal halves were used for genetic typing. Biochemical markers were used to discriminate whether the transferred Pch-1 gene was located in chromosome 7D, as is the case for a resistance factor present in “Roazon” wheat. In the crosses involving Pané 247, resistance was not associated with the 7D locus Pln, which determines sterol ester pattern (dominant allele in H-93-70). In the crosses with the 7D/7Ag substitution line, resistance was neither associated with protein NGE-11 (7D marker), nor alternatively inherited with respect to protein C-7 (7Ag marker). It is concluded that gene Pch-1 represents a different locus and is not an allele of the resistance factor in “Roazon” wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Wheat ; Aegilops ventricosa ; Pseudocercosporella herpotrichoides ; Eyespot disease ; Resistance gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Gene Pch1, which confers resistance to eyespot disease (Pseudocercosporella herpotrichoides Fron), has been located on chromosome 7D in the H-93 wheat-Aegilops ventricosa transfer lines using isozyme markers and DNA probes corresponding to group 7 chromosomes. Previous experiments had failed to ascertain this location. The lack of segregation of the resistance trait in progeny from reciprocal crosses between lines H-93-70 and VPM1 indicates that their respective resistance factors are allelic. Line H-93-51 carries the endopeptidase allele Ep-D1b but is susceptible to eyespot, which indicates that resistance to eyespot is not a product of the Ep-D locus, as had been proposed in a previous hypohesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Key words Aegilops ventricosa ; Triticum aestivum ; Mayetiola destructor ; Hessian fly ; Resistance gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A new Hessian fly (Mayetiola destructor) resistance gene from Aegilops ventricosa and its transfer to hexaploid wheat is described. The 4D(4Mv) substitution line H-93-33 derived from the cross [(Triticum turgidum H-1-1×Aegilops ventricosa no. 11)×Triticum aestivum H-10-15] was highly resistant to the Spanish population tested. Resistance seemed to be inherited as a single dominant factor in the F2 generation resulting from a cross of H-93-33 with its susceptible parent (H-10-15). Resistance in Ae. venticosa no. 10 was located on chromosome 4Mv using Mv wheat/Ae. ventricosa addition lines. The resistance gene transferred from Ae. ventricosa no. 11 to H-93-33 (H27) is allelic with respect to that of Ae. ventricosa no. 10 and is non-allelic with respect to the genes H3 and H6 from Monon and Caldwell respectively. The assignment of H27 gene to chromosome 4Mv is further supported by its linkage to a gene encoding isozyme Acph-Mv1, previously located on chromosome 4Mv in the line H-93-33. A new marker from homoeologous chromosome group 4 (Amp-Mv2) present in H-93-33 and the 4Mv addition line is described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Key words Aegilops triuncialis ; Triticum aestivum ; Heterodera avenae ; Cereal cyst nematode ; Resistance gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The cereal cyst nematode (Heterodera avenae) is an important root parasite of common wheat. A high level of resistance was transferred to wheat from Aegilops triuncialis (TR lines) using the cross [(T. turgidum×Ae. triuncialis)×T. aestivum]. Low fertility (3–5 viable kernels per plant) was observed during the process but the surviving hybrid plants were highly vigorous. To obtain stable resistant lines further crosses to T. aestivum were performed. The resistance in TR lines seems to be transferred from the C genome of Ae. triuncialis (genomes CCUU). Ae. triuncialis was highly resistant to the two Spanish populations of H. avenae tested, as well as to four French races and two Swedish populations. The histological analysis showed a hypersensitive reaction in the roots of a resistant TR line inoculated with the Ha71 pathotype of H. avenae, whereas well-formed syncytia were observed in the roots of the susceptible control. Resistance to the H. avenae Ha71 pathotype seemed to be inherited as determined by a single dominant factor in the crosses between resistant TR lines and susceptible cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...