Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 16 (1989), S. 1-6 
    ISSN: 1432-0983
    Keywords: Mitosis ; cdc2 + ; cyclin ; fission yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 53 (1987), S. 319-323 
    ISSN: 1572-9699
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Key words Cell cycle ; DNA replication ; DNA polymerase ; Fission yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Highly purified DNA polymerase δ from the fission yeast Schizosaccharomyces pombe is a complex of at least four distinct subunits. Genes encoding three of these (pol3 + /cdc6 + , cdc1 + and cdc27 + ) have been characterised previously. Here we describe the isolation and characterisation of cdm1 + , the gene encoding the smallest (22kDa) subunit of the Pol δ complex. Over-expression of cdm1 + , which encodes a 160 amino-acid protein with no significant sequence similarity to proteins in current databases, is able to rescue cells carrying temperature-sensitive mutations in either pol3 + /cdc6 + , cdc1 + or cdc27 + . Cells deleted for cdm1 + are viable, indicating that cdm1 + is non-essential for mitotic growth, and are no more sensitive to a variety of DNA replication inhibitors and DNA damaging agents than are wild-type cells. In addition, over-expression of cdm1 + suppresses the temperature-sensitive cdc24-M38 mutant suggesting that cdc24 + may also have a role in DNA polymerase δ function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Protein kinases ; cdc2 ; Schizosaccharomyces pombe ; Cell cycle ; Mitotic control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cdc2 + gene function plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. Recessive temperature-sensitive mutations in the cdc2 gene cause cell cycle arrest when shifted to the restrictive temperature, while a second class of mutations within the cdc2 gene causes a premature advancement into mitosis. Previously the cdc2 + gene has been cloned and has been shown to encode a 34 kDa phosphoprotein with in vitro protein kinase activity. Here we describe the cloning of 11 mutant alleles of the cdc2 gene using two simple methods, one of which is presented here for the first time. We have sequenced these alleles and find a variety of single amino acid substitutions mapping throughtout the cdc2 protein. Analysis of these mutations has identified a number of regions within the cdc2 protein that are important for cdc2 + activity and regulation. These include regions which may be involved in the interaction of the cdc2 + gene product with the proteins encoded by the wee1 +, cdc13 + and suc1 + genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 240 (1993), S. 315-322 
    ISSN: 1617-4623
    Keywords: Cell cycle ; Fission yeast ; p34cdc2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2, We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25 that it responds to altered levels of both the mitotic inhibitor p1072331 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 232 (1992), S. 344-350 
    ISSN: 1617-4623
    Keywords: p34cdc2 ; Extragenic suppressors ; Cell cycle ; Mitotic control ; Protein kinases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...