Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: GTR binding protein ; Gs activity ; adenylate cyclase activity ; Bio 14.6 cardiomyopathic hamster norepinephrine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The Bio 14.6 cardiomyopathic Syrian hamster is an animal model of human idiopathic cardiomyopathy. The pathogenesis of the disease in this animal has not yet been clearly elucidated. It is well known that α- and β-adrenergic receptors are increased in the myocardium of this animal, but that isoprenaline does not produce an augmented response. We examined the activity of cardiac stimulatory GTP-binding protein (Gs), which couple with β-adrenergic receptors to stimulate adenylate cyclase, in Bio 14.6 cardiomyopathic hamsters at 90 and 160 days of age. The cardiac norepinephrine concentration was significantly increased in Bio 14.6 hamsters compared with control hamsters (F1B) at 90 days of age (1,739±120 vs 1,470±161 ng/g wet tissue weight, p〈0.05). Cardiac forskolin-stimulated adenylate cyclase activities at 90 and 160 days of age were lower in the cardiomyopathic hamsters than in the F1B controls (90 days old: 98±24 vs 122±29 pmol/min/mg protein, p〈0.05; 160 days old: 74±13 vs 124±28 pmol/min/mg protein, p〈0.01). Cardiac Gs activities at 90 and 160 days of age were significantly lower in Bio 14.6 hamsters than those in F1B hamsters (90 days old: 204±42 vs 259±49 pmol/min/mg protein, p〈0.05; 160 days old: 156±39 vs 211±60 pmol/min/mg protein, p〈0.05). We thus demonstrated functional defects in cardiac Gs protein and adenylate cyclase activity in the Bio 14.6 cardiomyopathic hamsters at 90 to 160 days of age (the hypertrophic stage of cardiomyopathy). Such defects could be one possible mechanism preventing an enhanced response to β-adrenergic stimulation in this animal and could also contribute to myocardial decompensation in the late stage of cardiomyopathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: oxygen free radicals ; myofibrils ; creatine kinase ; heart dysfunction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...