Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 8162-8169 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 8040-8046 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Production of electronic ground state NO2 (2A1) from 248 nm photolysis of HNO3 was detected by laser induced fluorescence (LIF). A growth in the LIF signal was observed following the photolysis and has been interpreted as the relaxation of NO2 through the higher vibrational levels of the X(2A1) state; an energy region where the probe laser photodissociates the NO2 instead of inducing fluorescence. The rate coefficients for NO2 relaxation through these high vibrational levels were determined by fits of time resolved LIF signal to a stepladder kinetic model. The results of the kinetic analysis suggest that the observed relaxation begins at the 2B2 threshold near 9500 cm−1 and extends downward through approximately 5 vibrational levels of the ground electronic surface. The derived quenching rate coefficients (in units of 10−12 cm3 molecule−1 s−1) are 0.51±0.05, 1.0±0.1, 1.4±0.2, 2.6±0.6, and 8.7±1.1 for Ar, He, N2, O2, and CO2 collision partners, respectively. The discrepancies between these coefficients and previous literature values are rationalized in terms of a dependence of the vibrational relaxation rate on total internal energy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 8638-8652 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The method of moments is used to obtain solutions to the Boltzmann equation describing flow and thermal relaxation of binary atomic mixtures undergoing adiabatic free jet expansion. Differential moment equations are solved within the framework of an anisotropic Maxwellian distribution function. Numerical integration of these equations yields the temporal dependence of the four moments of the distribution function for each flow component; density, hydrodynamic velocity, parallel temperature, and perpendicular temperature. Results are presented for mixtures of the rare gases which yield new insight into the driving forces behind the phenomena of velocity and temperature slip. The model can easily be extended to ternary and higher atomic mixtures. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...