Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 13 (1997), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Increases in the atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and to ozone depletion in the stratosphere. Nitric oxide (NO) is a cause of acid rain and tropospheric ozone. The use of N fertilizers in agriculture has direct and indirect effects on the emissions of both these gases, which are the result of microbial nitrification and denitrification in the soil, and which are controlled principally by soil water and mineral N contents, temperature and labile organic matter.The global emission of N2O from cultivated land is now estimated at 3.5 TgN annually, of which 1.5 Tg has been directly attributed to synthetic N fertilizers, out of a total quantity applied in 1990 of about 77Tg N. This amount was 150% above the 1970 figure. The total fertilizer-induced emissions of NO are somewhere in the range 0.5-5 Tg N. Mineral N fertilizers can also be indirect as well as direct sources of N2O and NO emissions, via deposition of volatilized NH3 on natural ecosystems and denitrification of leached nitrate in subsoils, waters and sediments.IPCC currently assume an N2O emission factor of 1.25 ± 1.0% of fertilizer N applied. No allowance is made for different fertilizer types, on the basis that soil management and cropping systems, and unpredictable rainfall inputs, are more important variables. However, recent results show substantial reductions in emissions from grassland by matching fertilizer type to environmental conditions, and in arable systems by using controlled release fertilizers and nitrification inhibitors. Also, better timing and placement of N, application of the minimum amount of N to achieve satisfactory yield, and optimization of soil physical conditions, particularly avoidance of excessive wetness and compaction, would be expected to reduce the average emission factor for N2O. Some of these adjustments would also reduce NO emissions. However, increasing global fertilizer use is likely to cause an upward trend in total emissions even if these mitigating practices become widely adopted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Grassland ; Denitrification ; N-fertiliser ; Nitrification ; Nitrous oxide emissions ; Global warming ; Ozone layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aim was to investigate the effects of different N fertilisers on nitrous oxide (N2O) flux from agricultural grassland, with a view to suggesting fertiliser practices least likely to cause substantial N2O emissions, and to assess the influence of soil and environmental factors on the emissions. Replicate plots on a clay loam grassland were fertilised with ammonium sulphate (AS), urea (U), calcium nitrate (CN), ammonium nitrate (AN), or cattle slurry supplemented with AN on three occasions in each of 2 years. Frequent measurements were made of N2O flux and soil and environmental variables. The loss of N2O-N as a percentage of N fertiliser applied was highest from the supplemented slurry (SS) treatment and U, and lowest from AS. The temporal pattern of losses was different for the different fertilisers and between years. Losses from U were lower than those from AN and CN in the spring, but higher in the summer. The high summer fluxes were associated with high water-filled pore space (WFPS) values. Fluxes also rose steeply with temperature where WFPS or mineral N values were not limiting. Total annual loss was higher in the 2nd year, probably because of the rainfall pattern: the percentage losses were 2.2, 1.4, 1.2, 1.1 and 0.4 from SS, U, AN, CN and AS, respectively. Application of U in the spring and AN twice in the summer in the 2nd year gave an average emission factor of 0.8% – lower than from application of either individual fertiliser. We suggest that similar varied fertilisation practices, modified according to soil and crop type and climatic conditions, might be employed to minimise N2O emissions from agricultural land.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Grassland ; Spring barley ; Nitrification inhibitor ; Nitrous oxide emission ; Denitrification ; Global warming ; Ozone layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aims of this study were to assess the effectiveness of the nitrification inhibitors dicyandiamide (DCD) and nitrapyrin on reducing emissions of nitrous oxide (N2O) following application of NH4 + or NH4 +-forming fertilisers to grassland and spring barley. DCD was applied to grassland with N fertiliser applications in April and August in 1992 and 1993, inhibiting N2O emissions by varying amounts depending on the fertiliser form and the time of application. Over periods of up to 2 months following each application of DCD, emissions of N2O were reduced by 58–78% when applied with urea (U) and 41–65% when applied with ammonium sulphate (AS). Annual emissions (April to March) of N2O were reduced by up to 58% and 56% in 1992–1993 and 1993–1994, respectively. Applying DCD to ammonium nitrate (AN) fertilised grassland did not reduce emissions after the April 1993 fertilisation, but emissions following the August application were reduced. Nitrapyrin was only applied once, with the April fertiliser applications in 1992, reducing N2O emissions over the following 12 months by up to 40% when applied with U. When N fertiliser was applied in June without DCD, the DCD applied in April was still partly effective; N2O emissions were reduced 50%, 60% and 80% as effectively as the emissions following the April applications, for AS in 1993, U in 1992 and 1993, respectively. In 1992 the persistence of an inhibitory effect was greater for nitrapyrin than for DCD, increasing after the June fertiliser application as overall emissions from U increased. There was no apparent reduction in effectiveness following repeated applications of DCD over the 2 years. N2O emissions from spring barley, measured only in 1993, were lower than from grassland. DCD reduced emissions from applied U by 40% but there was no reduction with AN. The results demonstrate considerable scope for reducing emissions by applying nitrification inhibitors with NH4 + or NH4 +-forming fertilisers; this is especially so for crops such as intensively managed grass where there are several applications of fertiliser nitrogen per season, as the effect of inhibitors applied in April persists until after a second fertiliser application in June.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0867
    Keywords: China ; Loess Plateau ; maize ; 15N ; Nitrogen ; urea ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha−1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha−1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha−1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha−1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 157 (1993), S. 175-184 
    ISSN: 1573-5036
    Keywords: barley ; extraction ; malting quality ; mineralisation ; nitrogen ; 15N-labelling ; potassium chloride ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The potentially mineralisable nitrogen extracted from 10 soils by two methods involving boiling with dilute KCl were compared with the actual uptake of soil N by spring barley in the field, as determined with the use of 15N-labelled fertiliser. Generally good correlations were found for those soils which had previously been cropped with cereals (defined in Great Britain as either ‘N-Index zero’, or ‘low nitrogen status’ soils, for fertiliser recommendations), with the results obtained by the more severe of the two methods being somewhat better than by the other method. When organic matter content was also taken into account, correlations were improved. Mineral nitrogen in the soil at sowing was highly correlated with potentially mineralisable nitrogen, and with uptake, but this relationship did not hold for soil samples taken in January, well before the likely sowing date. This suggested that early measurement of soil mineral nitrogen (when decisions on cropping are normally made) was not a practicable method for determinining spring fertiliser applications, and that the measure of potentially mineralisable nitrogen appeared more promising in this regard.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...