Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Responses of plant processes to temperature may vary according to the time scale on which they are measured. In this study, both short-term and seasonal responses of photosynthesis to temperature were examined. A field study of seasonal changes in the temperature response of photosynthesis was conducted on two provenances, French and Moroccan, of mature maritime pine (Pinus pinaster Ait.). Measurements were made every 2 months over a 1-year period and used to parameterize a mechanistic model of photosynthesis. Temperature responses of maximum Rubisco activity, Vcmax, and potential electron transport rate, Jmax, were obtained for each measurement period, as was the response of stomatal conductance, gs, to water vapour pressure deficit (VPD). Absolute values of Vcmax and Jmax at 25 °C were related to needle nitrogen content, Narea.Narea, and thus Vcmax and Jmax, were negatively correlated with the mean minimum temperature in the month preceding measurements. The ratio of Jmax : Vcmax at 25 °C varied between 1 and 1·7 but did not show any seasonal trend. Nor was there any seasonal trend in the relative temperature response of Vcmax, which had an activation energy Ha of approximately 57 kJ mol−1 throughout the experiment. The activation energy of Jmax was also close to constant throughout the experiment, averaging 39 kJ mol−1. For the French provenance, the optimal temperature of Jmax was positively correlated with the maximum temperature of the previous day, but no such correlation was found for the Moroccan provenance. The response of gs to VPD also varied seasonally, with much stronger stomatal closure in winter months. Taken together, these results implied a translational shift downwards of the photosynthetic temperature response curve with increasing Tprev, and a shift in the temperature optimum of photosynthesis of 5–10 °C between summer and winter. These results illustrate that the short-term temperature response of photosynthesis varies significantly on a seasonal basis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd, UK
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We explore the extent to which a simple mechanistic model of short-term plant carbon (C) dynamics can account for a number of generally observed plant phenomena. For an individual, fully expanded leaf, the model predicts that the fast-turnover labile C, starch and protein pools are driven into an approximate or moving steady state that is proportional to the average leaf absorbed irradiance on a time-scale of days to weeks, even under realistic variable light conditions, in qualitative agreement with general patterns of leaf acclimation to light observed both temporally within the growing season and spatially within plant canopies. When the fast-turnover pools throughout the whole plant (including stems and roots) also follow this moving steady state, the model predicts that the time-averaged whole-plant net primary productivity is proportional to the time-averaged canopy absorbed irradiance and to gross canopy photosynthesis, and thus suggests a mechanistic explanation of the observed approximate constancy of plant light-use efficiency (LUE) and carbon-use efficiency. Under variable light conditions, the fast-turnover pool sizes and the LUE are predicted to depend negatively on the coefficient of variation of irradiance. We also show that the LUE has a maximum with respect to the fraction of leaf labile C allocated to leaf protein synthesis (alp), reflecting a trade-off between leaf photosynthesis and leaf respiration. The optimal value of alp is predicted to decrease at elevated [CO2]a, suggesting an adaptive interpretation of leaf acclimation to CO2. The model therefore brings together a number of empirical observations within a common mechanistic framework.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The growth rates of woody plants depend on both the rate of photosynthetic carbon gain and the availability of essential nutrients. Instantaneous carbon gain is known to increase in response to increasing atmospheric CO2 concentration, but it is uncertain whether this will translate into increased growth in the longer term under nutrient-limited conditions. An analytical model to address this question was developed by Comins & McMurtrie (1993, Ecological Applications 3, 666–681). Their model was further tested and analysed. Manipulation of various assumptions in the model revealed its key assumptions and allowed a more confident prediction of expected growth responses to CO2 enrichment under nutrient-limited conditions.The analysis indicated that conclusions about the CO2 sensitivity of production were strongly influenced by assumptions about the relationship between foliar and heartwood nitrogen concentrations. With heartwood nitrogen concentration proportional to foliar nitrogen concentration, the model predicted a strong response of plant productivity to increasing CO2 concentration, whereas with heartwood nitrogen concentration set constant, the model predicted only a very slight growth response to changing CO2 concentration. On the other hand, predictions were only slightly affected by: (1) assumptions about the extent of nitrogen retranslocation out of senescing roots and foliage or wood during heartwood formation; (2) the effects of nitrogen status on specific leaf area or (3) leaf longevity; (4) carbon allocation between different plant parts; or (5) changes in the N:C ratio of organic matter sequestered in the passive pool of soil organic matter. Modification of the effect of foliar nitrogen concentration on the light utilization coefficient had only a small effect on the CO2 sensitivity for pines. However, this conclusion was strongly dependent on the chosen relationship between single-leaf photosynthesis and leaf nitrogen concentration. Overall, the analysis suggested that trees growing under nitrogen-limited conditions can respond to increasing atmospheric CO2 concentration with considerable increases in growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The temperature dependence of C3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity (Vcmax) and the potential rate of electron transport (Jmax). Original data sets were used for this review, as it is shown that derived values of Vcmax and its temperature response depend strongly on assumptions made in derivation. Values of Jmax and Vcmax at 25 °C varied considerably among species but were strongly correlated, with an average Jmax : Vcmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the Jmax : Vcmax ratio declined strongly with measurement temperature. The relative temperature responses of Jmax and Vcmax were relatively constant among tree species. Activation energies averaged 50 kJ mol−1 for Jmax and 65 kJ mol−1 for Vcmax, and for most species temperature optima averaged 33 °C for Jmax and 40 °C for Vcmax. However, the cold climate tree species had low temperature optima for both Jmax(19 °C) and Vcmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both Jmax and Vcmax, implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: It is well recognized that photosynthesis of C3 plants is highly responsive to CO2 concentration. However, in natural ecosystems, plants are subject to a range of feed-back effects that can interact with increased photosynthetic carbon gain in different ways so that it is not clear to what extent increased photosynthesis will translate into increased growth. To assess the probable growth response of nutrient-limited forests to increasing CO2 concentration, we use a previously developed modelling framework and apply it under conditions where the supply of nutrients is affected by a range of different factors.Our analysis indicates that forest growth is likely to be highly stimulated by increasing CO2 concentration in forests with high fertility, in forests with nitrogen fixing plants, in those subject to fire or where nitrogen in wood is effectively removed from the biologically active cycle either through physical removal of stems in harvesting or through continued stem growth over long time periods. Forest growth is likely to be stimulated by CO2 concentration in both phosphorus- and sulphur-limited forests provided nutrients in heartwood of trees are removed from the active nutrient cycle. Without this removal from the cycling system, however, sulphur-limited forests should show little response to increasing CO2. In phosphorus-limited forests without phosphorus removal, the response to increasing CO2 depends further on the equilibration state of the large pool of unavailable secondary phosphorus. Considered over periods of centuries during which the secondary pool has equilibrated, growth of phosphorus-limited forests is likely to be only weakly stimulated by increasing CO2 concentration. However, over shorter periods, increasing CO2 concentration should lead to a substantial increase in productivity.In general, it can be concluded that systems that are more open with respect to nutrient gains and losses are likely to be more responsive to increasing CO2 concentration than systems where the amount of available nutrients is less variable. In more open systems, operation at a lower internal nutrient concentration as a result of increasing atmospheric CO2 concentration can lead to reduced nutrient losses per unit carbon gain. Our analysis shows that the effect of increasing CO2 on forest growth can differ substantially between forests due to interactions with a range of factors that affect nutrient supply. The response of a particular forest to increasing CO2 concentration can only be predicted if the main factors controlling nutrient supply and growth in that forest are understood and incorporated into an assessment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...