Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 21 (1998), S. 119-136 
    ISSN: 1432-0541
    Keywords: Key words. Minimum-area hulls, Star-shaped polygons, Monotone polygons, 3sum-Hardness, Lower bounds, Computational geometry, Design and analysis of algorithms.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract. We study some minimum-area hull problems that generalize the notion of convex hull to star-shaped and monotone hulls. Specifically, we consider the minimum-area star-shaped hull problem: Given an n -vertex simple polygon P , find a minimum-area, star-shaped polygon P * containing P . This problem arises in lattice packings of translates of multiple, nonidentical shapes in material layout problems (e.g., in clothing manufacture), and has been recently posed by Daniels and Milenkovic. We consider two versions of the problem: the restricted version, in which the vertices of P * are constrained to be vertices of P , and the unrestricted version, in which the vertices of P * can be anywhere in the plane. We prove that the restricted problem falls in the class of ``3sum-hard'' (sometimes called ``n 2 -hard'') problems, which are suspected to admit no solutions in o(n 2 ) time. Further, we give an O(n 2 ) time algorithm, improving the previous bound of O(n 5 ) . We also show that the unrestricted problem can be solved in O(n 2 p(n)) time, where p(n) is the time needed to find the roots of two equations in two unknowns, each a polynomial of degree O(n) . We also consider the case in which P * is required to be monotone, with respect to an unspecified direction; we refer to this as the minimum-area monotone hull problem. We give a matching lower and upper bound of Θ(n log n) time for computing P * in the restricted version, and an upper bound of O(n q(n)) time in the unrestricted version, where q(n) is the time needed to find the roots of two polynomial equations in two unknowns with degrees 2 and O(n) .
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Discrete & computational geometry 18 (1997), S. 377-383 
    ISSN: 1432-0444
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract. We give an algorithm to compute a (Euclidean) shortest path in a polygon with h holes and a total of n vertices. The algorithm uses O(n) space and requires $O(n+h^2\log n)$ time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Discrete & computational geometry 23 (2000), S. 247-259 
    ISSN: 1432-0444
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract. We prove that the maximum number of geometric permutations, induced by line transversals to a collection of n pairwise disjoint balls in \R d , is Θ (n d-1 ) . This improves substantially the upper bound of O(n 2d-2 ) known for general convex sets [9]. We show that the maximum number of geometric permutations of a sufficiently large collection of pairwise disjoint unit disks in the plane is two, improving the previous upper bound of three given in [5].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...