Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Cytopathology 14 (2003), S. 0 
    ISSN: 1365-2303
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Cytopathology 14 (2003), S. 0 
    ISSN: 1365-2303
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Histopathology 42 (2003), S. 0 
    ISSN: 1365-2559
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 285-288 
    ISSN: 1432-0789
    Keywords: Iron toxicity ; Iron toxic soil ; Submergence NPK ; fertilization ; Liming ; Nutrient stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a greenhouse experiment, the nutrients NPK, NPK + lime, K, and Mn were applied to an iron-toxic soil (Typic Haplastulf). Soil pH and dry matter production were increased and Eh and available Fe in the soil were decreased. Though liming the soil decreased available Fe and Mn and increased pH to the greatest extent, the highest dry matter production was obtained with NPK application. NPK + lime produced a smaller yield than NPK without lime. Though the application of K or Mn alone produced much less dry matter than NPK or NPK + lime, no symptoms of Fe toxicity were observed. We conclude that Fe toxicity can be reduced with a balanced use of fertilizers (NPK or NPK + lime) and its occurrence was mostly due to nutrient stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Denitrification ; Flooded soil ; 15N ; Urea ; 15N balance ; Wetland rice ; Oryza sativa L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary It is commonly assumed that a large fraction of fertilizer N applied to a rice (Oryza sativa L.) field is lost from the soil-water-plant system as a result of denitrification. Direct evidence to support this view, however, is limited. The few direct field, denitrification gas measurements that have been made indicate less N loss than that determined by 15N balance after the growing season. One explanation for this discrepancy is that the N2 produced during denitrification in a flooded soil remains trapped in the soil system and does not evolve to the atmosphere until the soil dries or is otherwise disturbed. It seems likely, however, that N2 produced in the soil uses the rice plants as a conduit to the atmosphere, as does methane. Methane evolution from a rice field has been demonstrated to occur almost exclusively through the rice plants themselves. A field study in Cuttack, India, and a greenhouse study in Fort Collins, Colorado, were conducted to determine the influence of rice plants on the transport of N2 and N2O from the soil to the atmosphere. In these studies, plots were fertilized with 75 or 99 atom % 15N-urea and 15N techniques were used to monitor the daily evolution of N2 and N2O. At weekly intervals the amount of N2+N2O trapped in the flooded soil and the total-N and fertilized-N content of the soil and plants were measured in the greenhouse plots. Direct measurement of N2+N2O emission from field and greenhouse plots indicated that the young rice plant facilitates the efflux of N2 and N2O from the soil to the atmosphere. Little N gas was trapped in the rice-planted soils while large quantities were trapped in the unplanted soils. N losses due to denitrification accounted for only up to 10% of the loss of added N in planted soils in the field or greenhouse. The major losses of fertilizer N from both the field and greenhouse soils appear to have been the result of NH3 volatilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 88 (1985), S. 299-306 
    ISSN: 1573-5036
    Keywords: Anaerobic condition ; Direct seeded ; Nutrient changes ; Submerged rice soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nutrient changes in submerged rice soil were studied in soil-water-plant ecosystem in direct-seeded rice crop. Continuous removal of nutrients by the crop resulted in ultimate decrease in the availability of NH4−N, P, K, Ca, Mg, Mn, Zn and Cu. However, there was a slight increase in Fe availability in soil with increase in period of submergence and crop growth. The data was subjected to statistical function fittings to study the nature of changes. Depending on the R2% values, quadratic type was the best fit for pH, available NH4−N, K, Mg, Fe, Mn and Cu, whereas logarithmic type was the best fit for available P, Ca and Zn. No response was noticed to the application of P and K. Highest correlation coefficient between grain yield and NH4−N in soil was obtained at the panicle initiation stage indicating that limiting nitrogen during this period might affect grain yield to the maximum extent compared to tiller initiation and maximum tillering stages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 41 (1995), S. 67-75 
    ISSN: 1573-0867
    Keywords: additives ; agronomic efficiency ; P availability ; phosphate rocks ; rice ; (Oryza sativa L.) ; thermally altered rock P
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The P availability in soil and agronomic efficiency of the products of non-premium grade, unreactive Purulia phosphate rock (PPR) heated alone or with Na2CO3 or KCl at different temperatures were investigated in two P deficient soils. The heated products of PPR alone did not improve the P availability in soil or P utilisation by rice over the original PPR. The products of PPR-KCl mixtures heated at 300-900°C were not effective at all. Out of several products of PPR with Na2CO3, the product prepared from PPR and Na2CO3 mixture in the weight ratio 2:1 heated at 900°C was comparable to superphosphate (SP) with respect to P availability in soil, straw and grain yield and P uptake by rice. The effectiveness of the products of PPR-Na2CO3 mixtures heated at 700°C though inferior to SP were superior to that of the original PPR in the highly acidic P deficient soil from Choudwar. However, products of another phosphate rock (PR) from Jordan and NA2CO3 mixtures heated at 900°C were less effective in comparison to SP. The amount of inherent silica present in Jordan PR was inadequate to promote the apatite-NA2CO3-SiO2 reaction towards completion thus leading to an inferior product. On the other hand, similar products of non-premium grade Kasipatnam and Mussoorie PRs which are not suitable for direct application were comparable to SP in their effectiveness when these PRs were fused with Na2CO3 in the weight ratio 2:1 at 900°C. X-ray diffraction studies indicated presence of water and citrate soluble phosphate phases viz., Na3PO4, NaCaPO4 and possibly Ca7 (PO4)2 (S104)2 in these products of PR-Na2CO3 mixture heated at 900°C. The water and citrate soluble phases of these products could release adequate P for absorption by crop.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 19 (1989), S. 113-119 
    ISSN: 1573-0867
    Keywords: Ammonia volatilization ; intermediate deep water ; shallow submergence ; alternate wetting and drying ; upland rice ; urea supergranule ; neem cake-coated urea ; rock phosphate-coated urea ; gypsum-coated urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Relative ammonia volatilization loss from prilled urea, urea supergranule (USG), neem cake-coated urea (NCU), rock phosphate-coated urea (RPCU), gypsum-coated urea (GCU), and prilled urea supplemented with dhaincha (Sesbania aculeata) green manure (Dh + PU) was measured in the fields under different hydrological situations of rice growing. Ammoniacal-N and pH of flood water were less with point placement of USG and Dh + PU treatments than with single basal broadcast applications of urea-based fertilizers. Ammonia collected with an acid trap in an enclosed chamber ranged from 1.47–3.07, 0.24–3.74, 0.80–3.50 and 0.50–1.20% of the applied N in upland, alternate wetting and drying, shallow submergence and intermediate deep water situations, respectively. The collected ammonia was less with point placement of USG at 5 cm depth in all situations and with Dh + PU treatment in shallow submergence than with other sources of N. Single basal broadcast applications of RPCU or NCU resulted in relatively higher loss. The loss from top-dressed urea was less than that from basally applied urea because of larger crop canopy at later stages of crop growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 2 (1981), S. 109-118 
    ISSN: 1573-0867
    Keywords: H2SO4 - or HCl-acidulated rock phosphates ; phosphate fertilizers ; water- and citrate soluble phosphates ; rice based cropping system ; rice—wheat/wheat—rice rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Pot experiments were conducted with an acid laterite soil and a shallow black calcareous soil to study the effect of initial application of North Carolina and Udaipur rock phosphates, acidulated with HCl or H2SO4 to the extent of 25, 50, 75 or 100% of the requirement for complete conversion into superphosphate, on the grain yield and P uptake by crops in rice—wheat and wheat—rice cropping sequences. The products obtained on acidulation with HCl or H2SO4 at a given degree behaved similarly. Rock phosphates partially acidulated with HCl or H2SO4 to 50–75% could be used successfully for growing rice or wheat on both the soil types. In the rice—wheat sequence, the wheat crop following rice gave very low grain yields compared to the wheat crop in the wheat—rice rotation, while in the wheat—rice rotation the rice crop following wheat gave yields comparable to that of rice in the rice—wheat rotation. The reasons for this differential effect have been made plausible. The studies indicate that a 50–75% H2SO4 - or HCl-acidulated rock phosphate may be used as a single application to an upland crop in an upland crop—rice rotation especially on acid soils, where the water soluble fractions of the product are used by the wheat crop. During the process of growth of the upland crop under aerobic soil conditions, the citrate soluble and insoluble fractions undergo such transformations that make it possible for the following rice crop to utilize them under waterlogged conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-0867
    Keywords: 15N ; residual N ; Sesbania ; urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field studies were conducted during two consecutive wet seasons in flooded rice (Oryza sativa L.) to determine the effect of green manure on urea utilization in a rice-fallow-rice cropping sequence. Replicated plots were fertilized with 60 to 120 kg of urea N ha−1 in three split applications (50, 25 and 25%) with or without incorporation of dhaincha (Sesbania aculeata L.) (100 kg N ha−1). During the first crop only 31 to 44% of the urea added was used by the rice. Incorporatingin situ grown dhaincha (GM) into the soil at transplanting had little effect on urea utilization. Forty-four to 54% of the N added was not recovered in the soil, rice crop, or as nitrate leachate during the first cropping season. Incorporation of GM had no effect on fertilizer N recovery. Only about 2% of the urea N added to the first rice crop was taken up by the second rice crop and, as in the first crop, the GM had little effect on residual N, either in amount or utilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...