Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the Gram-positive, antibiotic-producing bacterium Streptomyces coelicolor A3(2), the thiol-disulphide status of the hyphae is controlled by a novel regulatory system consisting of a sigma factor, σR, and its cognate anti-sigma factor, RsrA. Oxidative stress induces intramolecular disulphide bond formation in RsrA, which causes it to lose affinity for σR, thereby releasing σR to activate transcription of the thioredoxin operon, trxBA. Here, we exploit a preliminary consensus sequence for σR target promoters to identify 27 new σR target genes and operons, thereby defining the global response to disulphide stress in this organism. Target genes related to thiol metabolism encode a second thioredoxin (TrxC), a glutaredoxin-like protein and enzymes involved in the biosynthesis of the low-molecular-weight thiol-containing compounds cysteine and molybdopterin. In addition, the level of the major actinomycete thiol buffer, mycothiol, was fourfold lower in a sigR null mutant, although no candidate mycothiol biosynthetic genes were identified among the σR targets. Three σR target genes encode ribosome-associated products (ribosomal subunit L31, ppGpp synthetase and tmRNA), suggesting that the translational machinery is modified by disulphide stress. The product of another σR target gene was found to be a novel RNA polymerase-associated protein, RbpA, suggesting that the transcriptional machinery may also be modified in response to disulphide stress. We present DNA sequence evidence that many of the targets identified in S. coelicolor are also under the control of the σR homologue in the actinomycete pathogen Mycobacterium tuberculosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Bacterial genomics have revealed the widespread occurrence of eukaryotic-like protein kinases in prokaryotes, but little is known about their regulation, endogenous substrates, and physiological role. The present study concerns one of these enzymes, the serine/threonine protein kinase PknF from Mycobacterium tuberculosis. It is shown that, in addition to its autokinase activity, PknF is able to phosphorylate Rv1747, a newly described ABC transporter. This reaction appears to involve two FHA domains of Rv1747. It is suggested that recruitment and phosphorylation of Rv1747 depend on the interaction between its two non-redundant FHA domains and the autophosphorylated form of PknF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A complex programme of regulation governs gene expression during development of the morphologically and biochemically complex eubacterial genus Streptomyces. Earlier work has suggested a model in which ‘higher level’ pleiotropic regulators activate ‘pathway-specific’ regulators located within chromosomal gene clusters encoding biosynthesis of individual antibiotics. We used mutational analysis and adventitious overexpression of key Streptomyces coelicolor regulators to investigate functional interactions among them. We report here that cluster-situated regulators (CSRs) thought to be pathway-specific can also control other antibiotic biosynthetic gene clusters, and thus have pleiotropic actions. Surprisingly, we also find that CSRs exhibit growth-phase-dependent control over afsR2/afsS, a ‘higher level’ pleiotropic regulatory locus not located within any of the chromosomal gene clusters it targets, and further demonstrate that cross-regulation by CSRs is modulated globally and differentially during the S. coelicolor growth cycle by the RNaseIII homologue AbsB. Our results, which reveal a network of functional interactions among regulators that govern production of antibiotics and other secondary metabolites in S. coelicolor, suggest that revision of the currently prevalent view of higher-level versus pathway-specific regulation of secondary metabolism in Streptomyces species is warranted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 50 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The master regulator for entry into sporulation in Bacillus subtilis is the DNA-binding protein Spo0A, which has been found to influence, directly or indirectly, the expression of over 500 genes during the early stages of development. To search on a genome-wide basis for genes under the direct control of Spo0A, we used chromatin immunoprecipitation in combination with gene microarray analysis to identify regions of the chromosome at which an activated form of Spo0A binds in vivo. This information in combination with transcriptional profiling using gene microarrays, gel electrophoretic mobility shift assays, using the DNA-binding domain of Spo0A, and bioinformatics enabled us to assign 103 genes to the Spo0A regulon in addition to 18 previously known members. Thus, in total, 121 genes, which are organized as 30 single-gene units and 24 operons, are likely to be under the direct control of Spo0A. Forty of these genes are under the positive control of Spo0A, and 81 are under its negative control. Among newly identified members of the regulon with transcription that was stimulated by Spo0A are genes for metabolic enzymes and genes for efflux pumps. Among  members  with  transcription  that  was in-hibited by Spo0A are genes encoding components of the DNA replication machinery and genes that govern flagellum biosynthesis and chemotaxis. Also in-cluded in the regulon are many (25) genes with products that are direct or indirect regulators of gene transcription. Spo0A is a master regulator for sporulation, but many of its effects on the global pattern of gene transcription are likely to be mediated indirectly by regulatory genes under its control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 36 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: whiK was one of five new whi loci identified in a recent screen of NTG-induced whi mutants and was defined by three mutants, R273, R318 and R655. R273 and R318 produce long, tightly coiled aerial hyphae with frequent septation. In contrast, R655 shows a more severe phenotype; it produces straight, undifferentiated aerial hyphae with very rare short chains of spores. Subcloning and sequencing showed that whiK encodes a member of the FixJ subfamily of response regulators, with a C-terminal helix–turn–helix DNA-binding domain and an apparently typical N-terminal phosphorylation pocket. Unexpectedly, a constructed whiK null mutant failed to form aerial mycelium, showing that different alleles of this locus can arrest Streptomyces coelicolor development at very distinct stages. As a consequence of the null mutant phenotype, whiK was renamed bldM. The bldM null mutant fits into the extracellular signalling cascade proposed for S. coelicolor and is a member of the bldD extracellular complementation group. The three original NTG-induced mutations that defined the whiK/bldM locus each affected the putative phosphorylation pocket. The mutations in R273 and in R318 were the same, replacing a highly conserved glycine (G-62) with aspartate. The more severe mutant, R655, carried a C-7Y substitution adjacent to the highly conserved DD motif at positions 8–9. However, although BldM has all the highly conserved residues associated with the phosphorylation pocket of conventional response regulators, aspartate-54, the putative site of phosphorylation, is not required for BldM function. Constructed mutant alleles carrying either D-54N or D-54A substitutions complemented the bldM null mutant in single copy in trans, and strains carrying the D-54N or the D-54A substitution at the native chromosomal bldM locus sporulated normally. BldM was not phosphorylated in vitro with either of the small-molecule phosphodonors acetyl phosphate or carbamoyl phosphate under conditions in which a control response regulator protein, NtrC, was labelled efficiently.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...