Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 41 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Cyanobacteria exhibit numerous responses to changes in the intensity and spectral quality of light. What sensors do cyanobacteria use to detect light and what are the mechanisms of signal transduction? The publication in 1996 of the complete genome sequence of the cyanobacterium Synechocystis 6803 provided a tremendous stimulus for research in this field, and many light-sensors and signal transducers have now been identified. However, our knowledge of cyanobacterial light-signal transduction remains fragmentary. This review summarizes what we know about the ways in which cyanobacteria perceive light, some of the ways which they respond to light signals and some recent achievements in elucidating the signal transduction mechanisms. Some problems in characterizing cyanobacterial signal transduction pathways are outlined and alternative experimental strategies are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 33 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A gene required for the short-term regulation of photosynthetic light harvesting (the state transition) has been identified in the cyanobacterium Synechocystis sp. PCC6803. The open reading frame is designated sll1926 in the complete Synechocystis gene sequence. The deduced amino acid sequence has no homologues in current sequence databases and no recognizable sequence motifs. It encodes a putative integral membrane protein of 16 kDa, which we have designated RpaC (regulator of phycobilisome association C). Fluorescence measurements of an insertional inactivation mutant of rpaC (Δsll1926) show that it is specifically unable to perform state transitions. Δsll1926 has approximately wild-type levels of PS1, PS2 and phycobilisomes. Measurements of oxygen evolution and uptake show Δsll1926 to have no deficiency in electron transport rates. In vitro [γ-32P]-ATP labelling experiments suggest that RpaC is not the 15 kDa membrane phosphoprotein previously implicated in state transitions. Δsll1926 grows more slowly than the wild type only at very low light intensities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The transport and sorting of extracytoplasmic proteins in cyanobacteria is made complex by the presence of a highly differentiated membrane system. Proteins destined for the periplasm and thylakoid lumen are initially transported by Sec- and Tat-type pathways but little is known of the mechanisms that ultimately direct them to the correct destinations. We have generated a Synechocystis PCC6803 transformant that expresses a fusion protein comprising the Tat-specific targeting signal of Escherichia coli TorA linked to green fluorescent protein (GFP). Immunoblotting indicates the presence of mature-size GFP but no precursor form, demonstrating that efficient translocation has taken place. Confocal microscopy and immunogold electron microscopy reveal GFP to be almost exclusively located in the periplasm, with almost no protein evident in the thylakoid network. These data point to the operation of highly effective sorting pathways for soluble proteins in this cyanobacterium. The observed sorting of the GFP suggests that either (a) the Tat apparatus is located only in the plasma membrane or (b) the TorA-GFP is targeted across either membrane but the GFP is subsequently directed to the periplasm, perhaps by a default sorting pathway to this compartment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 390 (1997), S. 421-424 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The structures of many photosynthetic pigment–protein complexes have now been determined, but a real understanding of the photosynthetic membrane at the molecular level will also require knowledge of the organization and dynamics of these complexes in the intact membrane. Using ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 181 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Two open reading frames (slr0115 and slr0947) in the genome of the cyanobacterium Synechocystis sp. PCC 6803 are shown to be involved in the regulation of the coupling of phycobilisomes to photosynthetic reaction centres. Homologues of these genes, called ycf27, have been found in a range of phycobilin-containing organisms. The slr0115 and slr0947 gene products are OmpR-type DNA-binding response regulator proteins. Deletion of slr0115 results in increased efficiency of energy transfer from phycobilisomes to photosystem II relative to photosystem I. Reduction of the copy number of slr0947 has the opposite phenotypic effect. We have given the slr0115 and slr0947 genes the designations rpaA and rpaB respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 191 (2000), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The bacterial cell division protein FtsZ is a structural analogue of tubulin. Bacterial mutants in which the ftsZ gene is inactivated are unable to divide. Numerous inhibitors of tubulin assembly are known, some of which are used as fungicides. The strong structural homology between FtsZ and tubulin raises the possibility that some of these inhibitors could affect bacterial cell division. Here we report that the tubulin assembly inhibitors thiabendazole and 2-methylbenzimidazole cause cell elongation in Escherichia coli and cyanobacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 214 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The two ycf 27 genes from the filamentous cyanobacterium Tolypothrix PCC 7601 have been cloned and sequenced. These two genes, previously designated rpaA and rpaB, encode putative transcriptional regulators of the ‘OmpR’ family. In Synechocystis PCC 6803, homologous genes have been linked to the regulation of transfer of excitation energy from the phycobilisome to photosystem (PS) I and PSII respectively. Partial clones from Spirulina platensis, Dactylococcopsis salina and Synechococcus PCC 7002 have also been sequenced. A table of identity between the proteins confirms that RpaB belongs in the same family as the algal ycf 27 proteins. However, RpaA is a rather different protein and should lose the designation ycf 27. The loss of rpaB from the plastid genomes of eukaryotic algae is associated with the loss of phycobiliproteins, so it is likely that this gene performs a similar role in algae to that in cyanobacteria. The implications for chloroplast evolution are discussed along with the possible identity of the cognate histidine kinase gene in the plastid genomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5079
    Keywords: State transitions ; excitation energy transfer ; photosystem stoichiometry ; chromatic acclimation ; non-photochemical quenching ; cyanobacteria ; Synechococcus 6301
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 38 (1993), S. 135-140 
    ISSN: 1573-5079
    Keywords: photosynthesis ; light-harvesting ; light-state transition ; signal transduction ; cyanobacteria ; Synechococcus 6301 ; Synechococcus sp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Light-state transitions in cyanobacteria are a rapid physiological adaptation mechanism which changes the distribution of excitation energy absorbed by the light-harvesting complexes between Photosystem II and Photosystem I. State transitions in two cyanobacterial species are shown to be inhibited by buffers containing 0.2–0.4 M phosphate. Both the state 1 and the state 2 transition are inhibited, so that cells may be locked in the state to which they were adapted before the addition of phosphate. The inhibition of the state 1 transition is due to inhibition of photosynthetic electron transport. However, the inhibition of the state 2 transition is probably due to a direct effect on the biochemical signal transduction pathway. The implications for the biochemical mechanism of state transitions are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5079
    Keywords: Cyanobacteria (Synechococcus 6301) ; excitation energy distribution ; light harvesting ; photosynthesis ; state transition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mechanism by which state 1-state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled was investigated by examining the effects of a variety of chemical and illumination treatments which modify the redox state of the plastoquinone pool. The extent to which these treatments modify excitation energy distribution was determined by 77K fluorescence emission spectroscopy. It was found that treatment which lead to the oxidation of the plastoquinone pool induce a shift towards state 1 whereas treatments which lead to the reduction of the plastoquinone pool induce a shift towards state 2. We therefore propose that state transitions in cyanobacteria are triggered by changes in the redox state of plastoquinone or a closely associated electron carrier. Alternative proposals have included control by the extent of cyclic electron transport around PS I and control by localised electrochemical gradients around PS I and PS II. Neither of these proposals is consistent with the results reported here.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...