Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Nitric oxide synthase (NOS) type II is induced in many cell types in response to cytokines or endotoxin. The duration of type II NOS mRNA expression in astroglial cells and macrophages in vitro is brief, even in the continuous presence of inducers, and their removal dramatically accelerates mRNA decay. Addition of cycloheximide, in the presence or absence of actinomycin D, protected the mRNA from degradation. Whereas type II NOS mRNA was partially stabilized by actinomycin D, manganese superoxide dismutase mRNA was almost completely stabilized. This suggests that type II NOS mRNA stability is regulated via transcription- as well as translation-dependent processes and that the effect of actinomycin D is mRNA specific.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 59 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Primary astrocyte cultures, C6 glioma cells, and N18 neuroblastoma cells were assayed for nitric oxide synthase (NOS) activity with a bioassay of cyclic GMP production in RFL-6 fibroblasts. Treatment of astrocyte cultures for 16–18 h with lipopolysaccharide (LPS) induced NOS-like activity that was l-arginine and NADPH dependent, Ca2+ independent, and potentiated by superoxide dismutase. Induction was evident after 4 h, was dependent on the dose of LPS, and required protein synthesis. Treatment of astrocyte cultures with leucine methyl ester reduced microglial cell contamination from 7 to 1%, with a loss of 44% of NOS-like activity. C6 cells treated with LPS also showed Ca2+-independent and l-arginine-dependent NOS-like activity. N18 cells demonstrated constitutive Ca2+-dependent NOS-like activity that was not enhanced by LPS induction. These data indicate that NOS-like activity can be induced in microglia, astrocytes, and a related glioma cell line as it can in numerous other cell types, but not in neuron-like N18 cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Astrocyte cultures prelabelled with either [3H]-inositol or 45Ca2+ were exposed to ATP and its hydrolysis products. ATP and ADP, but not AMP and adenosine, produced increases in the accumulation of intracellular 3H-labelled inositol phosphates (IP), efflux of 45Ca2+, and release of thromboxane A2 (TXA2). Whereas ATP-stimulated 3H-IP accumulation was unaffected, its ability to promote TXA2 release was markedly reduced by mepacrine, an inhibitor of phospholipase A2 (PLA2). ATP-evoked 3H-IP production was also spared following treatment with the cyclooxygenase inhibitor, indomethacin. We conclude that ATP-induced phosphoinositide (PPI) breakdown and 45Ca2+ mobilisation occurred in parallel with, if not preceded, the release of TXA2. Following depletion of intracellular Ca2+ with a brief preexposure to ATP in the absence of extracellular Ca2+, the release of TXA2 in response to a subsequent ATP challenge was greatly reduced when compared with control. These results suggest that mobilisation of cytosolic Ca2+ may be the stimulus for PLA2 activation and, thus, TXA2 release. Stimulation of α-adrenoceptors also caused PPI breakdown and 45Ca2+ efflux but not TXA2 release. The effects of ATP and noradrenaline (NA) on 3H-IP accumulation were additive, but their combined ability to increase 45Ca2+ efflux was not. Interestingly, in the presence of NA, ATP-stimulated TXA2 release was reduced. Our data provide evidence that functional P2-purinergic receptors are present on astrocytes and that ATP is the first physiologically relevant stimulus found to initiate prostanoid release from these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Astrocyte-enriched and meningeal cell cultures of the rat cerebral cortex were prepared, and their glycogen content was measured after 10–90 min under control (2.5 mM) concentrations of potassium after prefeeding with 20 mM glucose. No net change in glycogen level was noted in either culture over this period. Cell cultures were then exposed to increased concentrations of potassium (5, 10, and 15 mM), and their glycogen content was measured after 10–90 min. Both types of cell culture showed complex and variable changes in glycogen content. In general, increased potassium concentrations caused astrocyte glycogen stores to be reduced at physiological increases of potassium levels (from 2.5 to 5 mM and above), although a period of resynthesis was evident at all potassium concentrations. Meningeal cell glycogen levels were highly variable and only affected by high (10 and 15 mM) levels of potassium. These results are discussed with respect to the theory that changes in the external potassium concentration caused by neuronal activity might act as a signal controlling astrocyte glycogen stores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We have used receptor binding assays to determine the presence of three neurotransmitter receptors in a crude membrane fraction derived from neonatal rat cortical astrocyte cultures and subsequently determined the effects of transmitter receptor activation on astrocyte glycogen content in vitro. β-Adrenergic (KD= 88 pM; Bmax= 51 fmol/mg of protein), serotonin (KD= 70 nM; Bmax= 44 pmol/mg of protein), and muscarinic cholinergic receptors (KD= 79 pM; Bmax= 44 fmol/mg of protein) were found to be present on astrocyte membranes using [3H]dihydroalprenolol, [3H]serotonin, and [3H]quinuclidinyl benzilate, respectively, as ligands. Astrocyte cultures exposed to noradrenaline but not specific α- and β-receptor agonists contained 33% less glycogen than controls. Neither serotonin nor carbachol caused alterations in astrocyte glycogen content under normal conditions. Reserpine-treated cultures, however, responded to serotonin with a 28% decrease in glycogen content and contained higher levels of glycogen than non-reserpine-treated controls (a 55% increase). These results show that both noradrenaline and serotonin can evoke astrocyte glycogenolysis and that noradrenergic control of glycogen metabolism is probably exerted through both α- and /S-receptors. Neurotransmitter control of astrocyte glycogen turnover may represent a form of neuron-astrocyte signalling in addition to that provided by changes in external potassium concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific α1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+ -free medium, but was abolished when EGTA was also present in the Ca2+ -free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Elongated, highly polyunsaturated derivatives of linoleic acid (18:2ω-6) and linolenic acid (18:3ω-3) accumulate in brain, but their sites of synthesis are not fully characterized. To investigate whether neurons themselves are capable of essential fatty acid elongation and desaturation or are dependent upon the support of other brain cells, primary cultures of rat neurons and astrocytes were incubated with [1-14C]18:2ω-6, [1-14C]20:4ω-6, [1-14C]18:3ω-3, or [1-14C]20:5ω-3 and their elongation/desaturation products determined. Neuronal cultures were routinely incapable of producing significant amounts of Δ4-desaturase products. They desaturated fatty acids very poorly at every step of the pathway, producing primarily elongation products of the 18- and 20-carbon precursors. In contrast, astrocytes actively elongated and desaturated the 18- and 20-carbon precursors. The major metabolite of 18:2ω-6 was 20:4ω-6, whereas the primary products from 18:3ω-3 were 20:5ω-3, 22:5ω-3, and 22:6ω-3. The majority of the long-chain fatty acids formed by astrocyte cultures, particularly 20:4ω-6 and 22:6ω-3, was released into the extracellular fluid. Although incapable of producing 20:4ω-6 and 22:6ω-3 from precursor fatty acids, neuronal cultures readily took up these fatty acids from the medium. These findings suggest that astrocytes play an important supportive role in the brain by elongating and desaturating ω-6 and ω-3 essential fatty acid precursors to 20:4ω-6 and 22:6ω-3, then releasing the long-chain polyunsaturated fatty acids for uptake by neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 50 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We have examined some of the characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to phosphoinositide metabolism. Our results show that preincubation of [3H]inositol-labelled astrocyte cultures with phorbol 12-myristate 13-acetate (PMA) resulted in a time- (t1/2, 1–2 min) and concentration-dependent (IC50, 1 nM) decrease in the accumulation of [3H]inositol phosphates (IP) evoked by muscarinic receptor stimulation. Much longer (30–40 min) preincubation periods with higher concentrations (IC50, 600 μM) were required to elicit the same effect with the receptor agonist carbachol. Following preincubation, agonist-stimulated [3H]IP accumulation recovered with time; in both cases pretreatment levels of inositol lipid metabolism were attained within 2 days. Both phorbol ester and agonist pre-treatments were also effective in reversing the carbachol-evoked mobilisation of 45Ca2+ in these cells. However, their effects on phosphoinositide metabolism were found not to be additive. Although neither pretreatment affected the incorporation of [3H]inositol into phosphoinositides, both resulted in a loss of membrane muscarinic receptors as assessed by [3H]N-methylscopolamine binding. In washed membranes prepared from [3H]inositol-labelled cultures, the guanine nucleotide analogue, guanosine 5′-O-thiotri-phosphate (GTP-γ-S), caused a dose-dependent increase in [3H]IP formation. This response was enhanced when carbachol was also included in the incubation medium, although the agonist alone was without effect. Pretreatment with either PMA or carbachol had no effect on GTP-γ-S-stimulated [3H]IP accumulation but did reduce the ability of carbachol to augment this response. Similar findings were obtained when membranes were exposed directly to PMA. Phorbol ester pretreatment was also effective in reversing the increase in [3H]IP accumulation and 45Ca2+ mobilisation evoked by noradrenaline. However, following preincubation with carbachol there was no loss of nor-adrenaline-stimulated phosphoinositide breakdown although its ability to mobilise 45Ca2+ was blocked.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A nitric oxide (NO) synthase (NOS) can be induced in both astrocytes and cerebral endothelial cells with a combination of interleukin-1β/interferon-γ or lipopolysaccharide/interferon-γ, respectively. Exogenous NO, either from the chemical donor spermine NONOate or from activated astrocytes, affected the expression of inducible NOS in cerebral endothelial cells. In cerebral endothelial cells pretreated with spermine NONOate the induction of NOS was reduced, as revealed by mRNA expression and nitrite accumulation. Cytokine-treated astrocytes generating NO and placed in close proximity to endothelial cells decreased the expression of NOS induced by cytokines in endothelial cells. In addition, it was apparent that cytokine-activated astrocytes released a factor(s) that initiated transcriptional induction of NOS in cerebral endothelium. This suggests that astrocytes activated by cytokines in vivo could influence expression of inducible NOS in cells of the adjacent microvasculature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To reveal more of the mechanism whereby ATP induces arachidonic acid (AA) mobilization in astrocytes, primary cell cultures prelabeled with [3H]AA were exposed to ATP and various analogs. Release of 3H was dose and time dependent and was inhibited by blocking ATP binding. The potencies of a range of ATP analogs in mobilizing AA were consistent with that predicted for the involvement of a P2Y-purinergic receptor. Mobilization of AA was not due to nonspecific cell permeabilization, as assessed by leakage of cytoplasmic lactate dehydrogenase. AA mobilization by ATP was reduced when mobilization of intracellular calcium was inhibited and in the absence of extracellular calcium. Thap sigargin, which induces release of intracellular calcium, evoked mobilization of AA and thromboxane formation, findings similar to the effects of ATP. These results suggest that ATP stimulates AA mobilization via a P2Y-purinergic receptor and that, although extracellular calcium is involved, mobilization of intracellular calcium activates phospholipase A2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...