Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Hydroxyindole-O-methyltransferase was purified from bovine and chicken pineal glands to apparent homogeneity and their properties were compared. The purified enzymes from both pineal glands differed in electrophoretic mobility and isoelectric point. Sodium dodecyl sulfate gel electrophoresis revealed that hydroxyindole-O-methyltransferase of both bovine and chicken pineals was a dimer consisting of a subunit of molecular weight 39,000. The two enzymes also differed in substrate specificity. Bovine hydroxyindole-O-methyltransferase showed a high specificity toward N-acetylserotonin, whereas chicken enzyme methylated N-acetylserotonin and, to some extent, serotonin and bufotenine. The methylation of the three substrates was probably catalyzed by the same enzyme of chicken pineal, because the ratio of substrate availability did not change throughout the purification steps. Using the purified enzymes, we prepared antibody to both bovine and chicken hydroxyindole-O-methyltransferase. The antibody to bovine enzyme cross-reacted with both avian and mammalian enzymes, whereas the antibody to chicken hydroxyindole-O-methyltransferase reacted with avian enzymes, but far less with mammalian enzymes, indicating an immunochemical difference between avian and mammalian hydroxyindole-O-methyltransferase. The results suggest that the properties of hydroxyindole-O-methyltransferase have changed during the evolutionary development of the pineal glands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1438-8359
    Keywords: Nasal continuous positive airway pressure ; Midazolam ; Sedation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1438-8359
    Keywords: Key words: Ruptured intracranial aneurysm ; Hypoxia ; Early surgery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1436-2813
    Keywords: Key Words: urinary trypsin inhibitor ; polymorphonuclear elastase ; bronchoalveolar lavage fluid ; acute respiratory distress syndrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 27 (1995), S. 738-744 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Three isozymes of nitric oxide synthase (NOS) have been identified, cDNAs isolated and sequenced, and antibodies produced against each isozyme. Isozyme I (found primarily in central and peripheral neuronal cells), II (in cytokine-induced cells), and III (in endothelial cells) show less than 58% identity in the deduced amino acid sequences from humans. Many investigators have produced isozyme-specific antibodies and used these antibodies to locate these proteins in various cells and tissues. NOS-I is constitutively expressed, and the enzymatic activity is regulated by Ca2+ and calmodulin. The anti-NOS-I antibodies have allowed investigators to characterize non-adrenergic non-cholinergic neurons as nitrergic neurons, revealed NOS-I immunoreactivity in neurons and macula densa cells of the kidney and pancreatic islet cells, human skeletal muscle, and to demonstrate that various structures within the brain and spinal cord contain NOS-I. NOS-II is not regulated by Ca2+ and has been implicated in the pathophysiology of sepsis and autoimmune diseases. The anti-NOS-II antibodies have localized this isoform to infiltrating macrophages in pancreatic islets of diabetic rats, infiltrating macrophages and myocytes of a transplant heart model in rats, various cell types in bacterially and endotoxin-treated rats, alveolar macrophages in areas of inflammation in humans, and vascular smooth muscle cells of human atherosclerotic aneurysm. Isoform III is similar to NOS-I in that it is constitutively expressed and regulated by Ca2+ and calmodulin. Anti-NOS-III antibodies have found that this isoform is relatively specific for endothelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 27 (1995), S. 738-744 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Three isozymes of nitric oxide synthase (NOS) have been identified, cDNAs isolated and sequenced, and antibodies produced against each isozyme. Isozyme I (found primarily in central and peripheral neuronal cells), II (in cytokine-induced cells), and III (in endothelial cells) show less than 58% identity in the deduced amino acid sequences from humans. Many investigators have produced isozyme-specific antibodies and used these antibodies to locate these proteins in various cells and tissues. NOS-I is constitutively expressed, and the enzymatic activity is regulated by Ca2+ and calmodulin. The anti-NOS-I antibodies have allowed investigators to characterize non-adrenergic non-cholinergic neurons as nitrergic neurons, revealed NOS-I immunoreactivity in neurons and macula densa cells of the kidney and pancreatic islet cells, human skeletal muscle, and to demonstrate that various structures within the brain and spinal cord contain NOS-I. NOS-II is not regulated by Ca2+ and has been implicated in the pathophysiology of sepsis and autoimmune diseases. The anti-NOS-II antibodies have localized this isoform to infiltrating macrophages in pancreatic islets of diabetic rats, infiltrating macrophages and myocytes of a transplant heart model in rats, various cell types in bacterially and endotoxin-treated rats, alveolar macrophages in areas of inflammation in humans, and vascular smooth muscle cells of human atherosclerotic aneurysm. Isoform III is similar to NOS-I in that it is constitutively expressed and regulated by Ca2+ and calmodulin. Anti-NOS-III antibodies have found that this isoform is relatively specific for endothelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...