Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 57 (1985), S. 123-128 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ionic conductivity σ and mobility μ in the amorphous network polymers from poly(propylene oxide) (PPO) containing lithium perchlorate (LiClO4) at the concentration of [LiClO4]/[PO unit]=0.042 and 0.076 were investigated by means of complex impedance and time-of-flight methods. The σ values of the PPO–LiClO4 complexes reached 10−5 S cm−1 at 70 °C. The temperature dependence of σ deviated from a single Arrhenius behavior above a critical temperature (−1 °C and 11 °C) which approximately corresponded to the glass transition temperature Tg. The μ values were relatively high and changed from 10−6 to 10−5 cm2 V−1 s−1 in the temperature range of 40–100 °C. The Nernst–Einstein equation correlated μ with the ionic diffusion coefficient D. The Williams–Landel–Ferry equation with C1(approximately-equal-to)5 and C2(approximately-equal-to)30–50 held with a temperature dependence of D in the order of 10−8–10−7 cm2 s−1. The change in the number of ionic carriers n with temperature obeyed the Arrhenius equation with the activation energy of 0.26 and 0.34 eV. The degree of dissociation for LiClO4 in the PPO networks was 1–6%, and the dissociation was facilitated in the low LiClO4 concentration complex. The temperature dependence of σ above Tg was interpreted quantitatively in terms of n and μ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...