Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1439-0264
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The purpose of this study was to compare the natural fluorescence in the Harderian glands of the Syrian hamster, rat, mouse, Mongolian gerbil and guinea pig (both sexes). For each species, 10 animals (five males and five females) were used. Histological autofluorescence studies were performed using a fluorescence microscope (450–490 nm filter). Two different types of fluorescent cells were observed in both hamster (type AFI high intensity and type AFII, low fluorescence) and rat (type AFI, low fluorescence and type AFII, high fluorescence) Harderian glands. The fluorescence was basally located in all mice cells, whereas it was observed near the epithelial cell nuclei in the Mongolian gerbil (occupying two-thirds and one-third of the cells in males and females, respectively). A high intensity of fluorescence was present throughout the acinar cells in the guinea pig. The patterns of fluorescence identified exhibited a sexual dimorphism in all species studied. These results demonstrate that the Harderian glands of the animal species examined exhibit a variety of histological autofluorescence patterns.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Berlin, Germany : Blackwell Verlag GmbH
    Anatomia, histologia, embryologia 33 (2004), S. 0 
    ISSN: 1439-0264
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The presence of a cortex and medulla in the superficial pineal gland has been a controversial point in the morphology of this structure in mammals. The published reports indicate contradictory data especially in rodents. In this study the pineal gland of 15-day-old male rats (Rattus norvegicus) were studied, using scanning electron microscopy, in an attempt to determine whether or not a cortex and medulla are apparent in the pineal gland of young rats. The superficial pineal gland of the 15-day-old rat exhibited both a cortex and a medulla; these areas exhibited different structural organizations. The cortex had a thickness of 40–80 μm and the cells did not show a particular arrangement. The center of the gland was composed of a medulla, which had a width of 1000–1200 μm, and consisted of cells arranged in cords; its morphology was distinctly different from that of the cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6881
    Keywords: Pinoline ; melatonin ; lipid peroxidation ; membrane fluidity ; microsome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract We investigated the influence of pinoline (0.01–1.5 mM) on microsomal membrane fluiditybefore and after rigidity was induced by oxidative stress. In addition, we tested the effect ofpinoline in the presence of 1 mM melatonin. The fluidity in rat hepatic microsomes wasmonitored using fluorescence spectroscopy and it was compared to the inhibition ofmalonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) production as a reflection of lipid peroxidation.Below 0.6 mM, pinoline inhibited membrane rigidity in a manner parallel to its inhibitoryeffect on MDA + 4−HDA formation. At concentrations between 1–1.5 mM, pinoline wasless effective in stabilizing microsomal membranes than was predicted from its inhibition oflipid peroxidation. The addition of 1 mM melatonin enhanced the membrane-stabilizing activityof pinoline (0.01–0.6 mM). This cooperative effect was not observed for concentrations ofpinoline between 1–1.5 mM. When pinoline was tested without induced oxidative damage,1–1.5 mM pinoline maintained membrane fluidity at the same level as that recorded afterinduced lipid peroxidation. The results suggest that pinoline may be another pineal moleculethat prevents membrane rigidity mediated by lipid peroxidation and this ability is enhancedby melatonin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...