Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 14 (1982), S. 365-393 
    ISSN: 0066-4189
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Maschinenbau , Physik
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 545-552 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Gas diffusion and sorption on the surface of metal oxides are investigated using atomistic simulations, that make use of two different force fields for the description of the intramolecular and intermolecular interactions. MD and MC computations are presented and estimates of the mean residence time, Henry's constant, and the heat of adsorption are provided for various common gases (CO, CO2, O2, CH4, Xe), and semiconducting substrates that hold promise for gas sensor applications (SnO2, BaTiO3). Comparison is made between the performance of a simple, first generation force field (Universal) and a more detailed, second generation field (COMPASS) under the same conditions and the same assumptions regarding the generation of the working configurations. It is found that the two force fields yield qualitatively similar results in all cases examined here. However, direct comparison with experimental data reveals that the accuracy of the COMPASS-based computations is not only higher than that of the first generation force field but exceeds even that of published specialized methods, based on ab initio computations. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 9244-9253 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Gas diffusion and sorption in nanoceramic semiconductors are studied using atomistic simulation techniques and numerical results are presented for a variety of sorbate–sorbent systems. SnO2, BaTiO3, CuO, and MgO substrates are built on the computer using lattice constants and atomic parameters that have been either measured or computed by ab initio methods. The Universal force field is employed here for the description of both intramolecular and nonbonded interactions for various gas sorbates, including CH4, CO, CO2, and O2, pure and in binary mixtures. Mean residence times are determined by molecular dynamics computations, whereas the Henry constant and the isosteric heat of adsorption are estimated by a Monte Carlo technique. The effects of surface hydroxylation on the diffusion and sorption characteristics are quantified and discussed in view of their significance in practical gas sensing applications. The importance of fast diffusion on the response time of the sensitive layer and of the sorption efficiency on the overall sensitivity as well as the potential synergy of the two phenomena are discussed. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1573-1634
    Schlagwort(e): two-phase flow ; relative permeabilities ; ganglion dynamics ; viscous coupling ; coupling indices
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Technik allgemein
    Notizen: Abstract A parametric experimental investigation of the coupling effects during steady-state two-phase flow in porous media was carried out using a large model pore network of the chamber-and-throat type, etched in glass. The wetting phase saturation,S 1, the capillary number,Ca, and the viscosity ratio,k, were changed systematically, whereas the wettability (contact angleθ e ), the coalescence factorCo, and the geometrical and topological parameters were kept constant. The fluid flow rate and the pressure drop were measured independently for each fluid. During each experiment, the pore-scale flow mechanisms were observed and videorecorded, and the mean water saturation was determined with image analysis. Conventional relative permeability, as well as generalized relative permeability coefficients (with the viscous coupling terms taken explicitly into account) were determined with a new method that is based on a B-spline functional representation combined with standard constrained optimization techniques. A simple relationship between the conventional relative permeabilities and the generalized relative permeability coefficients is established based on several experimental sets. The viscous coupling (off-diagonal) coefficients are found to be comparable in magnitude to the direct (diagonal) coefficients over board ranges of the flow parameter values. The off-diagonal coefficients (k rij /Μ j ) are found to be unequal, and this is explained by the fact that, in the class of flows under consideration, microscopic reversibility does not hold and thus the Onsager-Casimir reciprocal relation does not apply. Thecoupling indices are introduced here; they are defined so that the magnitude of each coupling index is the measure of the contribution of the coupling effects to the flow rate of the corresponding fluid. A correlation of the coupling indices with the underlying flow mechanisms and the pertinent flow parameters is established.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Transport in porous media 30 (1998), S. 267-299 
    ISSN: 1573-1634
    Schlagwort(e): two-phase flow ; ganglion dynamics ; relative permeability ; population balance equations ; oil recovery ; soil remediation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Technik allgemein
    Notizen: Abstract Recent experimental work has shown that the pore-scale flow mechanism during steady-state two-phase flow in porous media is ganglion dynamics (GD) over a broad and practically significant range of the system parameters. This observation suggests that our conception and theoretical treatment of fractional flow in porous media need careful reconsideration. Here is proposed a mechanistic model of steady-state two-phase flow in those cases where the dominant flow regime is ganglion dynamics. The approach is based on the ganglion population balance equations in combination with a microflow network simulator. The fundamental information on the cooperative flow behavior of the two fluids at the scale of a few hundred pores is expressed through the system factors, which are functions of the system parameters and are calculated using the simulator. These system factors are utilized by the population balance equations to predict the macroscopic behavior of the process. The dependence of the conventional relative permeability coefficients not only on the wetting fluid saturation Swbut also on the capillary number, Ca, the viscosity ratio κ the wettability (θ0 a, θ0 r), the coalescence factor, Co, as well as the porous medium geometry and topology is explained and predicted on a mechanistic basis. Sample calculations have been performed for steady-state fully developed (SSFD) and steady-state nonfully developed (SSnonFD) flow conditions. The number distributions of the moving and the stranded ganglia, the mean ganglion size, the fraction of the nonwetting fluid in the form of mobile ganglia, the ratio of the conventional relative permeability coefficients and the fractional flows are studied as functions of the system parameters and are correlated with the flow phenomena at pore level and the system factors.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1573-1634
    Schlagwort(e): two-phase flow ; ganglion dynamics ; immiscible displacement ; relative permeability ; enhanced oil recovery
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Technik allgemein
    Notizen: Abstract A comparative experimental study of ‘steady-state’ two-phase flow in two types of model porous media is made to determine the effects of nonplanarity on the flow mechanisms and the mesoscopic flow behavior. The two model porous media have virtually the same pore geometry, but one has a planar network skeleton, whereas the other has a nonplanar (two-layer) skeleton. The latter is a new type of model porous medium that permits detailed visual observation and quantitative measurements without sacrificing the 3D character of the pore network topology. The capillary number and the flowrate ratio are changed systematically, whereas the viscosity ratio and the wettability (contact angle) are kept constant. Conventional relative permeabilities are determined and correlated with the porescale flow phenomena. In the range of parameter values investigated, the flow mechanism observed was ganglion dynamics (intrinsically unsteady, but giving a time-averaged steady-state). The nonplanarity is shown to have small qualitative but significant quantitative effects. In the nonplanar porous medium, the ganglion size distribution is wider, the mean ganglion size larger, and the stranded ganglia are fewer than those in the planar one, under the same flow conditions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 1122-1134 
    ISSN: 0001-1541
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The problem of mass transfer from a Newtonian fluid to a swarm of spheroidal adsorbers under creeping flow conditions is considered using the spheroid-in-cell model to represent the swarm. The flow field within the fluid envelope for the Kuwabara type of boundary conditions is obtained form the analytical solution of Dassios et al. (1994). The complete convective diffusion equation is used to describe mass transport within the envelope so that moderate and strong diffusional terms can be taken into account. A new set of boundary conditions is used that respects mass flux and concentration continuity across the outer surface of the cell and maximizes the applicability of the spheroid-in-cell model in the convection-to-diffusion transition regime. The resulting elliptic problem in two dimensions is solved numerically. Results for the upstream and downstream concentration profiles reveal that tangential diffusion is very significant and should not be neglected for moderate and low Peclet number values. Also, the classical Levich-type of formulation, which is theoretically valid for very weak diffusional terms only, can in practice be modified to predict with fair accuracy the overall Sherwood number and the adsorption efficiency of prolate and oblate spheroids-in-cell even in moderate Peclet number cases.
    Zusätzliches Material: 13 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 844-846 
    ISSN: 0001-1541
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 272-285 
    ISSN: 0001-1541
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: A test particle trajectory approach is developed for the simulation of deep bed filtration. A 3-D network of constricted pores represents the pore space of granular filters, network-scale trajectories of a large number of non-Brownian test particles are computed, and filter coefficient predictions are obtained for horizontal, down-and upflow filtration operation. This simulator yields numerical results that agree excellently with our earlier predictions by the pore-scale trajectory-based population balance method. The new approach, however, circumvents the cumbersome step of calculating the impacted fraction in each unit cell, which the earlier method required, by providing direct statistical estimates of the local and overall deposition rates for continuous and discrete pore-size distributions. For large superficial velocities (Vs 〉 ∼1 mm/s) and distributed pore size, downflow filters are more efficient than horizontal flow filters, whereas for small velocities (Vs〈 ∼ 0.5 mm/s) the opposite is observed. Horizontal flow operation is also favored by uniform packing for almost any value of the external pressure gradient. Upflow operation is the least efficient for the packings considered here over a broad range of superficial velocity and particle-size values. Observed differences among the three filtration types are maximal for uniform packings and decrease considerably with increasing packing heterogeneity.
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1213-1228 
    ISSN: 0001-1541
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The hydrodynamic interaction between a solid particle and a porous obstacle, both of spherical shape, the former moving slowly along the line of their centers and the latter held stationary in an external axisymmetrical flow field, is analyzed. Owing to the linearity of the creeping motion equations and the boundary conditions, this general problem can be decomposed into two simpler problems: I. the motion of the solid sphere relative to the porous one in a fluid at rest; II. an axisymmetrical streaming flow past the two spheres held stationary. The solution to problem II requires further decomposition into the problem of undisturbed flow in the absence of the two spheres and that of the two spheres following each other in a fluid at rest (problem III). The above component flow problems are solved analytically using the stream function formulation in bispherical coordinates. The flow and pressure fields, and the drag forces exerted on both spheres are determined as functions of the permeability, the slip factor, the gap length, and the relative size of the two spheres. In problem I it is found that the drag force exerted on the solid particle increases with decreasing permeability for any value of the gap length. The opposite behavior is observed in problems III (and II). In all cases, however, the drag force exerted on the porous sphere increases as the permeability decreases for any separation distance. In the region of very small separation distances the drag forces on the two spheres in problem I attain a weak maximum at a critical gap length which is a function of the obstacle permeability and the sphere size ratio. The behavior of the drag forces in problems II (and III) is more complicated and depends strongly on the sphere size ratio. The effects of the slip velocity and the particle to streaming velocity ratio (in the composite problem) on the values of the drag forces are also examined.
    Zusätzliches Material: 16 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...