Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 545-552 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Gas diffusion and sorption on the surface of metal oxides are investigated using atomistic simulations, that make use of two different force fields for the description of the intramolecular and intermolecular interactions. MD and MC computations are presented and estimates of the mean residence time, Henry's constant, and the heat of adsorption are provided for various common gases (CO, CO2, O2, CH4, Xe), and semiconducting substrates that hold promise for gas sensor applications (SnO2, BaTiO3). Comparison is made between the performance of a simple, first generation force field (Universal) and a more detailed, second generation field (COMPASS) under the same conditions and the same assumptions regarding the generation of the working configurations. It is found that the two force fields yield qualitatively similar results in all cases examined here. However, direct comparison with experimental data reveals that the accuracy of the COMPASS-based computations is not only higher than that of the first generation force field but exceeds even that of published specialized methods, based on ab initio computations. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 9244-9253 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Gas diffusion and sorption in nanoceramic semiconductors are studied using atomistic simulation techniques and numerical results are presented for a variety of sorbate–sorbent systems. SnO2, BaTiO3, CuO, and MgO substrates are built on the computer using lattice constants and atomic parameters that have been either measured or computed by ab initio methods. The Universal force field is employed here for the description of both intramolecular and nonbonded interactions for various gas sorbates, including CH4, CO, CO2, and O2, pure and in binary mixtures. Mean residence times are determined by molecular dynamics computations, whereas the Henry constant and the isosteric heat of adsorption are estimated by a Monte Carlo technique. The effects of surface hydroxylation on the diffusion and sorption characteristics are quantified and discussed in view of their significance in practical gas sensing applications. The importance of fast diffusion on the response time of the sensitive layer and of the sorption efficiency on the overall sensitivity as well as the potential synergy of the two phenomena are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 33 (1987), S. 1678-1689 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The problem of diffusion in pore networks of a certain class is considered, and a procedure for estimating effective diffusivities is formulated. The effective-medium theory is used to obtain an effective conductance for the network, which is then used to determine the effective diffusivity starting from first physical principles and utilizing the observation that a network of pores of uniform conductance satisfies the smooth field approximation. Comparison of the estimated intraparticle diffusivities with those obtained from the exact solution of the transport equation for large networks reveals high accuracy and reliability of the method. Results for a number of pore networks show that the smooth field assumption should not be employed arbitrarily since it always predicts higher effective diffusion coefficients than the exact ones, by more than one order of magnitude in some cases.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1213-1228 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The hydrodynamic interaction between a solid particle and a porous obstacle, both of spherical shape, the former moving slowly along the line of their centers and the latter held stationary in an external axisymmetrical flow field, is analyzed. Owing to the linearity of the creeping motion equations and the boundary conditions, this general problem can be decomposed into two simpler problems: I. the motion of the solid sphere relative to the porous one in a fluid at rest; II. an axisymmetrical streaming flow past the two spheres held stationary. The solution to problem II requires further decomposition into the problem of undisturbed flow in the absence of the two spheres and that of the two spheres following each other in a fluid at rest (problem III). The above component flow problems are solved analytically using the stream function formulation in bispherical coordinates. The flow and pressure fields, and the drag forces exerted on both spheres are determined as functions of the permeability, the slip factor, the gap length, and the relative size of the two spheres. In problem I it is found that the drag force exerted on the solid particle increases with decreasing permeability for any value of the gap length. The opposite behavior is observed in problems III (and II). In all cases, however, the drag force exerted on the porous sphere increases as the permeability decreases for any separation distance. In the region of very small separation distances the drag forces on the two spheres in problem I attain a weak maximum at a critical gap length which is a function of the obstacle permeability and the sphere size ratio. The behavior of the drag forces in problems II (and III) is more complicated and depends strongly on the sphere size ratio. The effects of the slip velocity and the particle to streaming velocity ratio (in the composite problem) on the values of the drag forces are also examined.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 272-285 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A test particle trajectory approach is developed for the simulation of deep bed filtration. A 3-D network of constricted pores represents the pore space of granular filters, network-scale trajectories of a large number of non-Brownian test particles are computed, and filter coefficient predictions are obtained for horizontal, down-and upflow filtration operation. This simulator yields numerical results that agree excellently with our earlier predictions by the pore-scale trajectory-based population balance method. The new approach, however, circumvents the cumbersome step of calculating the impacted fraction in each unit cell, which the earlier method required, by providing direct statistical estimates of the local and overall deposition rates for continuous and discrete pore-size distributions. For large superficial velocities (Vs 〉 ∼1 mm/s) and distributed pore size, downflow filters are more efficient than horizontal flow filters, whereas for small velocities (Vs〈 ∼ 0.5 mm/s) the opposite is observed. Horizontal flow operation is also favored by uniform packing for almost any value of the external pressure gradient. Upflow operation is the least efficient for the packings considered here over a broad range of superficial velocity and particle-size values. Observed differences among the three filtration types are maximal for uniform packings and decrease considerably with increasing packing heterogeneity.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 1122-1134 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The problem of mass transfer from a Newtonian fluid to a swarm of spheroidal adsorbers under creeping flow conditions is considered using the spheroid-in-cell model to represent the swarm. The flow field within the fluid envelope for the Kuwabara type of boundary conditions is obtained form the analytical solution of Dassios et al. (1994). The complete convective diffusion equation is used to describe mass transport within the envelope so that moderate and strong diffusional terms can be taken into account. A new set of boundary conditions is used that respects mass flux and concentration continuity across the outer surface of the cell and maximizes the applicability of the spheroid-in-cell model in the convection-to-diffusion transition regime. The resulting elliptic problem in two dimensions is solved numerically. Results for the upstream and downstream concentration profiles reveal that tangential diffusion is very significant and should not be neglected for moderate and low Peclet number values. Also, the classical Levich-type of formulation, which is theoretically valid for very weak diffusional terms only, can in practice be modified to predict with fair accuracy the overall Sherwood number and the adsorption efficiency of prolate and oblate spheroids-in-cell even in moderate Peclet number cases.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 844-846 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...