Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cultured bovine adrenocortical cells were previously shown to be functionally deficient in selenium and vitamin E when grown in medium supplemented with fetal bovine serum. In the present experiments, the lack of significant bioavailable amounts of selenium in the medium was demonstrated by the finding of only low levels of glutathione peroxidase in the cultured cells (0.008 U/mg protein compared with 0.045 U/mg protein in fresh adrenocortical tissue). When 20 nM selenium as selenite was added to the cultured adrenocortical cells, glutathione peroxidase activity increased continuously over 72 h, with a total increase of about eightfold over this period. Over the same time-course, the highest concentration of cumene hydroperoxide tolerated by the cells without cell death increased progressively from 10 μM to 50 μM. Addition of 1μM α-tocopherol also increased the amount of cumene hydroperoxide tolerated to 50 μM. Cell death was measured by cloning efficiency after removal of cumene hydroperoxide. Addition of either selenium or α-tocopherol had little effect on the growth rate of the cells over six passages, even when residual vitamin E was removed from the serum by extraction with ether and residual low molecular weight selenium compounds were removed by dialysis. It is concluded that combined deficiency of selenium and vitamin E, at least in the presence of other components of fetal bovine serum, has little effect on the ability of the cells to survive under normal conditions, as evidenced by continued long-term proliferation. However, the low levels of glutathione peroxidase resulting from selenium deficiency cause an increase susceptibility to peroxide-mediated toxicity. The combined deficiency of selenium and vitamin E impairs the ability of cells to survive under adverse conditions, as well as altering mitochondrial functions, as previously demonstrated.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...