Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 774 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 774 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Xenotransplanted adrenocortical tissue of clonal origin was formed in immunodeficient (scid) mice by using techniques of cell transplantation. The experiments reported here used a single clone of bovine adrenocortical cells, but 5 of 20 other randomly selected clones also formed tissue. Most ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature America Inc.
    Nature biotechnology 18 (2000), S. 39-42 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We report the first use of human telomerase reverse transcriptase (hTERT) expression in experimental xenotransplantation. Previously, we showed that bovine adrenocortical cells can be transplanted into severe combined immunodeficient (SCID) mice, and that these cells form functional tissue that ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1574-4647
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract p21WAF1/CIP1/SDI1 was originally described as a protein expressed at high levels in senescent human fibroblasts. We have studied the expression of p21 in adrenocortical cells, p21 is not expressed under most circumstances in the intact adrenal gland in vivo, except when the gland is damaged. When human and bovine adrenocortical cells are isolated and placed in both short-term and long-term culture, p21 levels are much higher. These levels did not show a large increase when the cells senesce after long-term proliferation. Thus, these observations raise the question of whether the elevated p21 in primary cultures of adrenocortical cells is caused by damage or whether p21 is elevated because the cells are dividing rather than quiescent, because it has been reported that p21 levels peak in G1 and G2 in dividing cells. In the present experiments on bovine and human adrenocortical cells in primary culture, labeling techniques that correlated nuclear p21 with measures of cell proliferation (bromodeoxyuridine incorporation and nuclear Ki-67 antigen) supported the hypothesis that p21 is associated with cell division and not with damage. This is consistent with recent data showing that, when adrenocortical cells are transplanted into immunodeficient mice, p21 is associated with healthy dividing cells in the transplant, p21 is not a unique marker for senescence, and more studies are required both to clarify its role in cell biology and to determine molecular features which characterize the senescent state of cells both in vitro and in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 14 (1980), S. 353-369 
    ISSN: 0091-7419
    Keywords: adrenocortical ; ACTH ; FGF ; cAMP ; fetal zone ; replication ; regulation ; steroidogenesis ; antioxidant ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Monolayer cultures of bovine and human adrenocortical cells have been used to study regulation of growth and function. Homogeneous bovine adrenocortical cells exhibit a finite life span of ∼60 generations in culture. Full maintenance of differentiated function (steroid hormone synthesis) requires an inducer such as ACTH and antioxidizing conditions. Full induction of differentiated function occurs only when cellular hypertrophy is stimulated by growth factors such as fibroblast growth factor and serum. ACTH and other agents that increase cellular cAMP inhibit replication but do not block growth factor-induced cellular hypertrophy. ACTH and growth factors together result in a hypertrophied, hyperfunctional cell. Replication ensues only when desensitization to the growth inhibitory effects of ACTH occurs.Cultures of the definitive and fetal zones of the human fetal adrenal cortex synthesize the steroids characteristic of the two zones in vivo. ACTH stimulates production of dehydroepiandrosterone (DHA), the major steroid product of the fetal zone, and of cortisol, the characteristic steroid product of the definitive zone. Prolonged ACTH treatment of fetal zone cultures results in a preferential increase in cortisol production so that the pattern of steroid synthesis becomes that of the definitive zone. The preferential increase in cortisol production by fetal zone cultures results from induction of 3β-hydroxysteroid dehydrogenase, Δ4,5 isomerase activity, which is limiting in fetal zone cells. ACTH thus causes a phenotypic change in fetal zone cells to that of definitive zone cells.In both bovine and human adrenocortical cells, the principal effect of ACTH is to induce full expression of differentiated function. This occurs only under conditions where growth substances and nutrients permit full amplication.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 112 (1982), S. 207-216 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: AC1 cells, a bovine adrenocortical cell clone, are rapidly arrested and killed by 2 mM aminooxyacetate, an inhibitor of transmination reactions. Toxicity of aminooxyacetate to cultured bovine adrenocortical cells was previously linked to a high ratio of capacity for oxidation of glutamine relative to pyruvate and was reversible by adding excess glutamine. The toxic effects of aminooxyacetate were shown in the present study to be completely prevented by the simultaneous addition of low concentrations (〈100 nM) of d-α-tocopherol (vitamin E) or selenious acid or higher concentration of other tocopherols, antioxidants, and ubiquinones (coenzymes Q6 and Q10). When antioxidant analogs were tested, it was found that structural features of the molecules that increase antioxidant potency increased potency for prevention of aminooxyacetate toxicity. α-Tocopherol-supplemented AC1 cells were found to be significantly less sensitive than nonsupplemented cells to growth inhibition by rotenone but not by fluorocitrate or dinitrophenol. Dinitrophenol (100 m̈M) stimulated substrate oxidation fivefold but had relatively slight effects on growth, either with or without α-tocopherol, indicating that limitation of the maximal activity of the tricarboxylic acid cycle and respiratory chain is probably not responsible for the sensitivity to aminooxyacetate and rotenone in cells not supplemented with α-tocopherol. Sensitivity to growth inhibition by rotenone and the prevention by ubiquinones of aminooxyacetate toxicity suggest a restriction of electron flow at the NADH-ubiquinone step. The resultant higher NADH/NAD+ ratio would result in a lowered capacity for metabolism of pyruvate with consequent dependence for tricarboxylic acid cycle function and energy production on 2-oxoglutarate from glutamine by the transmination pathway. Vitamin E and other antioxidants may restore efficient function of ubiquinone by preventing side reactions involving lipid peroxidation. Selenium may have a similar effect as cofactor for glutathione peroxidase. A high ratio of capacity for oxidation of glutamine relative to pyruvate and accompanying sensitivity to aminooxyacetate may reflect a deficiency of vitamin E and selenium in adrenocortical cells in culture.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 129 (1986), S. 395-402 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: During cellular senescence, non-clonal cultures of bovine adrenocortical cells show a continuous decline in the rate of production of cyclic AMP (cAMP) stimulated by adrenocorticotropin (ACTH), without changes in the rate of forskolin- or prostaglandin E1- stimulated cAMP production. We investigated the possible mechanisms for loss of response to ACTH by examining the properties of clones of bovine adrenocortical cells. ACTH-stimulated cAMP production rates were measured in clones immediately after isolation, during long-term growth following isolation, and after subcloning. ACTH-stimulated rates were compared with cAMP production in response to forskolin, which acts directly on the catalytic subunit of adenylate cyclase. The results show that cloning is not necessarily associated with a loss of response to ACTH, but that clones with high ACTH response can give rise to subclones with low response. Clones of adrenocortical cells, at the same approximate population doubling level (PDL), showed ACTH response levels that ranged from 12 to 135 pmol cAMP/106 cells/min, whereas mass cultures at this PDL showed ∼50 pmol/106 cells/min. Forskolin-stimulated cAMP production rates in clones varied only over the range of 59-119 pmol/106 cells/min and showed no correlation with the ACTH-stimulated rates. All clones were adrenocortical cells, as shown by mitogenic response to angiotensin II and cAMP-inducible 17α-hydroxylase activity. The replicative potential of clones varied widely, and there was no apparent correlation between ACTH response levels and growth potential. The level of ACTH response in each clone was stable during proliferation through at least 25 PD beyond the stage at which the clone was isolated. When clones were subcloned, a clone with a high ACTH response level produced sister subclones that had ACTH response levels ranging from 3% of that of the parent clone to a level slightly greater than that of the parent clone. The growth potential of sister subclones varied widely, as for the parent clones, and there was no obvious correlation between growth potential and ACTH response. Two subclones were cloned; in sub-subclones, levels of ACTH response were again different from each other and also from the parent subclone; in one case, the level of ACTH response was approximately eightfold higher than that of the parent subclone. These experiments show that clonal variation in the extent of expression of a differentiated property may occur in a normal differentiated cell in culture. The loss of ACTH response and the loss of proliferative potential appear to be independent stochastic events.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 109 (1981), S. 111-120 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The regulation of CO2 production from [U-14C]glutamine and C2 of [2-14C]pyruvate was investigated in cultured bovine adrenocortical cells, and the effect of alterations in the relative rates of oxidation of these substrates on cell proliferation, particularly in the presence of an inhibitor of transamination reactions, was examined. 14CO2 production from 2 mM [U-14C]glutamine and 2 mM [2-14C]pyruvate was measured in the presence of 100 μM 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation. Treatment of primary cultures for 24 h with 50 μM cortisol increased the oxidation of [14C]glutamine relative to that of [14C]pyruvate, an effect dependent on prior low cell density. Cortisol treatment also resulted in a prolonged delay in the onset of proliferation from low density, and completely inhibited growth in the presence of 2 mM aminooxyacetate, which reduces mitochondrial utilization of glutamine. The effects on glutamine and pyruvate metabolism and on cell growth, with or without aminooxyacetate, were prevented by simultaneous treatment with the antioxidants dimethyl sulfoxide (10 mM) and butylated hydroxyanisole (100 μM), suggesting the involvement of lipid peroxidation in the action of cortisol, as previously demonstrated for its action on 11β-hydroxylase. During continued proliferation of adrenocortical cells in the absence of cortisol there was also a slower increase in the oxidation of [14C]glutamine relative to that of [14C]pyruvate as a function of population doubling level. The rate of this increase was slowed by growth of cells in 2% O2 rather than the standard 19% O2, and accelerated by continued growth of cells in the presence of cortisol. The rate of increase in the oxidation of [14C]glutamine relative to that of [14C]pyruvate under these three conditions correlated with inhibition of cell growth by aminooxyacetate. In contrast to the complete inhibition of growth in aminooxyacetate demonstrated by cortisol-treated cells, control cells (19% O2) did proliferate, although growth was limited, whereas cells at 2% O2 proliferated to a much greater extent. In the absence of aminooxyacetate the rate of growth in primary adrenocortical cell cultures under these three conditions was similar. Lipid peroxidation appears to make cultured adrenocortical cells dependent on glutamine for mitochondrial function and proliferation by inhibiting the utilization of the normal substrate, pyruvate.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cultured bovine adrenocortical cells were previously shown to be functionally deficient in selenium and vitamin E when grown in medium supplemented with fetal bovine serum. In the present experiments, the lack of significant bioavailable amounts of selenium in the medium was demonstrated by the finding of only low levels of glutathione peroxidase in the cultured cells (0.008 U/mg protein compared with 0.045 U/mg protein in fresh adrenocortical tissue). When 20 nM selenium as selenite was added to the cultured adrenocortical cells, glutathione peroxidase activity increased continuously over 72 h, with a total increase of about eightfold over this period. Over the same time-course, the highest concentration of cumene hydroperoxide tolerated by the cells without cell death increased progressively from 10 μM to 50 μM. Addition of 1μM α-tocopherol also increased the amount of cumene hydroperoxide tolerated to 50 μM. Cell death was measured by cloning efficiency after removal of cumene hydroperoxide. Addition of either selenium or α-tocopherol had little effect on the growth rate of the cells over six passages, even when residual vitamin E was removed from the serum by extraction with ether and residual low molecular weight selenium compounds were removed by dialysis. It is concluded that combined deficiency of selenium and vitamin E, at least in the presence of other components of fetal bovine serum, has little effect on the ability of the cells to survive under normal conditions, as evidenced by continued long-term proliferation. However, the low levels of glutathione peroxidase resulting from selenium deficiency cause an increase susceptibility to peroxide-mediated toxicity. The combined deficiency of selenium and vitamin E impairs the ability of cells to survive under adverse conditions, as well as altering mitochondrial functions, as previously demonstrated.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...