Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physical Chemistry 47 (1996), S. 555-606 
    ISSN: 0066-426X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The interaction of light within tissue has been used to recognize disease since the mid-1800s. The recent developments of small light sources, detectors, and fiber optic probes provide opportunities to quantitatively measure these interactions, which yield information for diagnosis at the biochemical, structural, or (patho)physiological level within intact tissues. However, because of the strong scattering properties of tissues, the reemitted optical signal is often influenced by changes in biochemistry (as detected by these spectroscopic approaches) and by physiological and pathophysiological changes in tissue scattering. One challenge of biomedical optics is to uncouple the signals influenced by biochemistry, which themselves provide specificity for identifying diseased states, from those influenced by tissue scattering, which are typically unspecific to a pathology. In this review, we describe optical interactions pursued for biomedical applications (fluorescence, fluorescence lifetime, phosphorescence, and Raman from cells, cultures, and tissues) and then provide a descriptive framework for light interaction based upon tissue absorption and scattering properties. Finally, we review important endogenous and exogenous biological chromophores and describe current work to employ these signals for detection and diagnosis of disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 59 (1995), S. 125-130 
    ISSN: 0730-2312
    Keywords: CIN ; classification ; regression trees ; fluorescence spectroscopy ; SIL ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A quantitative measure of intraepithelial neoplasia which can be made in vivo without tissue removal would be clinically significant in chemoprevention studies. Our group is working to develop such a technique based on fluorescence spectroscopy. Using empirically based algorithms, we have demonstrated that fluorescence is discriminating normal cervix from low- and high-grade cervical dysplasias with similar performance to colposcopy in expert hands. These measurements can be made in vivo, in near real time, and results can be obtained without biopsy. This paper describes a new method using automated analysis of fluorescence emission spectra to classify cervical tissure into multiple diagnostic categories. First, data is reduced using the singular value decomposition (SVD), yielding a set of orthogonal basis vectors. Each patient's emission spectrum is then fit by linear least squares regression to the basis vectors, producing a set of coefficients for each patient. Based on these coefficient values, the classification and regression tree (CART) method predicts the patient's classification. These results suggest that laser-induced fluorescence can be used to atuomatically recognized and differentially diagnose cervical intraepithelial neoplasia (CIN) at colposcopy. This method of analysis is general in nature, and can analyze fluorescence spectra of suspected intraepithelial neoplasms from other organ sites. As a more complete understanding of the biochemical and morphologic basis of tissue spectroscopy is developed, it may also be possible to use fluorescence spectroscopy of the cervix as surrogate endpoint biomarker in Phase I and II chemoprevention trials.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: Chemoprevention ; cervical intraepithelial neoplasia ; fluorescence spectroscopy ; squamous intraepithelial lesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The cervix is an ideal organ for chemoprevetion studies and the study of squamous carcinogenesis. In chemoprevention trial design, four factors are important: high-risk cohorts must be identified; suitable agents must be selected; study designs should include Phase I, II and III; and studies should include the use of surrogate endpoint biomarkers. High-risk cohorts can be selected for Phase I, II and III trial in the cervix, for example, patients with high grade lesion such as cervical interaepithelial neoplasia (CIN) grade 3 and carcinoma in situ (CIS). A Phase III trial might also include patients with lesions infected with ocogenic HPV types. The cervix is accessible and can be safely followed with Papanicolaou (Pap) smears and colposcopy. Suitable agents include those likely to work in squamous lesions, including retinoids, difluoromethylornithine β-carotene, and others. In Phase I chemopreventive studies, does are de-escalated rather than escalated, determining toxicity and optimal dose schedule. Phase II studies looking at effectiveness need placebo control groups since regression of high-risk lesions is possible. Phase III studies, now multicenteric, should be carefully designed and include wide patient representation in order to evaluate the risk-benefit ratio of therpy, focusing on cancer incidence reduction. Surrogate endpoint biomarkers include quantitative histopathology, biologic measures of histopathologic markers include nuclear grading (i.e., shape, area, optical density, texture), nuclear pleomerphism, ploidy, and nucleolar size and position. Biomarkers under study at the present time in the cervix include proliferation markers (PCNA), regulation markers (EGFR, ras, myc, p53, retinoic acid receptors, ODC, spermidine/spermine ratios), differentiation markers (involucrin, cornifin, keratins), and markers of genetic instability (chromosome polysomy). Fluorescent spectroscopy uses light to probe the biochemical properties of tissue. This technique provides an automated diagnosis in real time with comparable sensitivity and specificity to colposcopy and can be used to monitor lesions in chemoprevention trials. Recruitment designs for cervix studies need to include a large referral population and patients with sufficiently large lesions. Clinicians involved in such studies need to stress contraception and smoking cessation, deal with language barriers, and provide compensation for child care and parking to patients in order to increase compliance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...