Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 59 (1986), S. 1790-1798 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm2 were achieved at 20-kV extractor voltage for an 8-μs pulse. With an aluminum-vapor arc, a current density of 15 mA/cm2 (0.3 A total) was measured for a 50-μs pulse.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 1728-1731 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino–silicate surface source are the thermal types. The hot alumino–silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 1185-1185 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino–silicate surface source are the thermal types. The hot alumino–silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 553-555 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Heavy ion fusion requires high current density, low-emittance ion sources that are reliable and long lived. We report experimental and simulation results on the performance of carbon arc ion sources intended for use in a scaled induction linac experiment. These sources use a planar electrostatic plasma switch to prevent plasma from entering the extraction gap before the extraction voltage pulse is applied. This provides good beam optics for short pulse extraction. Measurements of current density and emittance are presented. Both double-slit and channel plate-pepper pot techniques are used for emittance measurement. Data presented are from a compact three-arc source with plasma coupling of the cathodes. Data on lifetime and multiple arc triggering are also presented. The plasma switch performance has been modeled with a 2D explicit electrostatic particle-in-cell code. Results showing plasma shutoff phenomena and behavior during extraction are presented. A 2D steady-state ion flow model is also used to predict the optimum plasma switch geometry for producing minimum emittance generation at the switch surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...