Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 4741-4743 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Employing photoemission electron microscopy as spatially resolving method the existence range for pattern formation in the NO+H2 reaction on Rh(110) has been determined.The boundaries between bistable and excitable regions and between different types of chemical wave patterns have been mapped out in pH2, T-parameter space with fixed pNO=1.6×10−6 mbar. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 9822-9829 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The catalytic O2+H2 reaction on Rh(111) has been investigated in the 10−6–10−5 mbar range using photoelectron emission microscopy (PEEM) as spatially resolving method. Depending on the pretreatment of the sample in which the sample was exposed to pO2=2×10−4 mbar at T=770 K for varying times (tOX) different dynamic behavior was found. For tOX=12 h we found simple bistable behavior with reaction fronts initiating transitions between an unreactive high oxygen coverage state and a reactive almost bare surface. For tOX=36 h low work function (WF) areas developed in the area where two reaction fronts collided. For very long oxygen pretreatments with tOX=48 h the formation of secondary fronts traveling backwards from the area where two primary fronts collided were seen. The properties of the low WF areas which have been tentatively assigned to subsurface oxygen were studied in adsorption and titration experiments. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-879X
    Keywords: chemical waves ; NO reduction ; Rh ; Pt ; microstructured composite surfaces ; dynamical imaging ; scanning photoemission microscopy ; SPEM ; photoemission electron microscopy ; PEEM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The catalytic reduction of NO by hydrogen is investigated at (T = 650 K and (p≈10-6 mbar on a microstructured Rh/Pt(100) surface consisting of Pt(100) domains surrounded by a 600 Åthick Rh film. Synchrotron radiation scanning photoemission microscopy (SPEM), using photons focused into a spot of less than 0.2 μm diameter, is employed as a spatially and chemically resolving in situ technique. The chemical waves which arise in the bistable system NO+H2/Rh are imaged with SPEM monitoring the N 1s and O 1s photoelectrons. The reaction fronts initiate transitions from an inactive oxygen-covered surface (ΘO≈0.25 ML) to a reactive nitrogen-covered surface (ΘN≈0.06 ML). At the Pt/Rh interface, synergetic effects can be observed: the chemical waves on the Rh film nucleate preferentially at the Pt/Rh interface. This nucleation is poisoned by carbon contamination on the Pt area but is prevented in the vicinity of the Pt/Rh interface by the adjacent clean Rh film. No segregation of Pt to the surface was observed for the 600 Å thick Rh film.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-879X
    Keywords: bimetallic catalysts ; platinum ; rhodium ; O2 + H2 reaction ; pattern formation ; scanning photoelectron microscopy (SPEM) ; photoelectron emission microscopy (PEEM) ; Turing structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The O2 + H2 reaction has been studied under low pressure conditions (10-5 mbar) employing a microstructured Rh(110)/Pt surface as catalyst. Photoemission electron microscopy (PEEM) and scanning photoelectron microscopy (SPEM) were used as spatially resolving in situ methods. Under reaction conditions stationary concentration patterns (Turing‐like structures) of the adsorbates develop inside the Pt domains which are associated with a compositional change of the metallic substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...