Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 3299-3301 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A systematic investigation of the photoluminescence spectra from InGaN/GaN multiquantum-well structures with different levels of Si doping in the quantum well has been carried out, in order to study the screening of the strain induced piezoelectric field and potential fluctuations. It is found that the emission energy strongly depends on the carrier concentration, originating from the doping or photogeneration. The observed strong shift with Si doping can only partly be explained by the screening of the piezoelectric field. The main shift is suggested to be related to the screening of the localization potentials. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 64 (1994), S. 1842-1844 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Large enhancements in the electron mobility are reported for structures containing a pair of closely spaced Sb δ-doped layers in Si. The room-temperature mobility is enhanced by a factor of 2 compared to corresponding uniformly doped layers of singly δ-doped structures. Even higher mobilities were obtained by using a Schottky gate on top and applying a voltage to adjust the potential well. With an effective gate voltage of ∼−0.3 V the mobility was 1200 cm2 V−1 s−1 at room temperature, which is an enhancement by a factor of 10 relative to the layer with equivalent bulk doping concentration. The high mobility is attributed to wave functions with nodes at the δ-doped layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...