Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1600-0501
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The aim of the present study was to analyse the effect of organic coating of titanium implants on periimplant bone formation and bone/implant contact. Three types of implants were used: (i) Ti6Al4V implants with polished surface (control 1) (ii) Ti6Al4V implants with collagen coating (control 2) (iii) Ti6Al4V implants with collagen coating and covalently bound RGD peptides. All implants had square cross-sections with an oblique diameter of 4.6 mm and were inserted press fit into trephine burr holes of 4.6 mm in the mandibles of 10 beagle dogs. The implants of five animals each were evaluated after a healing period of 1 month and 3 months, during which sequential fluorochrome labelling of bone formation was performed. Bone formation was evaluated by morphometric measurement of the newly formed bone around the implant and the percentage of implant bone contact. After 1 month there was only little bone/implant contact, varying between 2.6 and 6.7% in the cortical bone and 4.4 and 5.7% in the cancellous bone, with no significant differences between the three types of implants. After 3 months, implants with polished surfaces exhibited 26.5 and 31.2% contact in the cortical and cancellous bone, respectively, while collagen-coated implants had 19.5 and 28.4% bone contact in these areas. Implants with RGD coating showed the highest values with 42.1% and 49.7%, respectively. Differences between the surface types as such were not significant, but the increase in bone/implant contact from 1 to 3 months postoperatively was significant only in the group of RGD-coated implants (P = 0.008 and P = 0.000). The results of this pilot study thus provide only weak evidence that coating of titanium implants with RGD peptides in the present form and dosage may increase periimplant bone formation in the alveolar process. The results therefore require further verification in a modified experimental setting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1600-0501
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The aim of the present study was to test the hypothesis that immobilization of bone morphogenic protein (BMP2) on the surface of titanium implants can enhance peri-implant bone formation. Ten adult female foxhounds received experimental titanium screw implants in the mandible 3 months after removal of all premolar teeth. Three types of implant surfaces were evaluated in each animal: (i) implants with machined titanium surface, (ii) implants coated with collagen I, (iii) implants coated with collagen I, chondroitin sulphate (CS) and BMP2. Peri-implant bone regeneration was assessed using histomorphometry after 1 and 3 months in five dogs each by measuring bone–implant contact (BIC) and the volume density of the newly formed peri-implant bone (BVD). After 1 month, there was no significant enhancement in BIC values but volume density of the newly formed peri-implant bone was significantly higher in the two groups of coated implants. No significant difference was found between collagen and BMP2 coating. After 3 months, BIC was significantly higher in both collagen and BMP2-coated implants compared with implants with machined surfaces. Peri-implant BVD was also significantly increased in coated implants in comparison with machined surfaces. It was concluded that collagen coating of dental screw implants can enhance BIC and peri-implant bone formation. Addition of BMP2 does not increase peri-implant bone formation in the present application.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Clinical oral implants research 15 (2004), S. 0 
    ISSN: 1600-0501
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The aim of the present study was to evaluate mineralized collagen membranes for enhancement of bone regeneration in calvarial defects. Forty adult female Sprague–Dawley rats received calvarial full thickness defects with a diameter of 8 mm. In 20 animals, the defects were covered with a mineralized collagen membrane, and 20 animals served as controls. After 6, 13, 26 and 52 weeks, bone regeneration was evaluated using undecalcified thick-section histometry. There was no clear enhancement of bone regeneration during the first 26 weeks after the operation. Bone regeneration underneath the membrane produced consistently thicker bone, albeit without statistical significance. Accumulation of membrane material occurred in the center of the defects surrounded by multinuclear giant cells during early stages of healing. After complete resorption of the membrane, significantly increased bone formation was seen after 52 weeks in the defects that had received membrane coverage. It was concluded that mineralization in the present form did not increase mechnical strength of the membrane to prevent interference of the membrane with bone regeneration in the defect. The reason for the increase in bone formation after resorption of the membrane after 26 weeks remains to be clarified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...