Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    BBA - Enzymology 403 (1975), S. 345-354 
    ISSN: 0005-2744
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    International Journal of Biological Macromolecules 12 (1990), S. 145-152 
    ISSN: 0141-8130
    Keywords: Acinetobacter calcoaceticus ; Exopolysaccharides ; biodispersan ; computer control ; emulsan ; fermentation ; oxygen uptake ; soap stock oil
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A two-stage fermentation process was established for the production of pigment-free pullulan by the yeast-like fungus Aureobasidium pullulans (ATCC 42023). In the first stage, starting at pH 4.5 with soy bean oil as the carbon source and glutamate as the nitrogen source, a cell mass of about 15 g l−1 dry cell weight was obtained, the population being restricted mainly to the yeast form of the microorganism (yeast form more than 90% of total cells) and the formation of pigment in the culture being prevented. Small amounts of pullulan (less than 2 g l−1) are produced at this phase, and the viscosity remained low throughout the entire growth stage. When the oil and glutamate source were nearly exhausted (below 5% of initial amounts), the cells were shifted to a production stage with sucrose as the carbon source with continued nitrogen depletion. Production of pullulan started immediately with no lag period. During 50 h of the production phase more than 35 g l−1 of pullulan was produced (productivity approx. 0.7 g l−1), resulting in a large increase in the viscosity of the broth. The production yield of pollulan on the sugar was about 0.6 g g−1. Morphogenesis from the yeast form of the microorganism to chlamydospores was still restrained and no pigment was formed in the culture during the production stage. A pigment-free polysaccharide, with a molecular mass in the range of 600–750 kDa, was recovered from the supernatant of the broth after solvent precipitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  A two-stage fermentation process was established for the production of pigment-free pullulan by the yeast-like fungus Aureobasidium pullulans (ATCC 42023). In the first stage, starting at pH 4.5 with soy bean oil as the carbon source and glutamate as the nitrogen source, a cell mass of about 15 g l–1 dry cell weight was obtained, the population being restricted mainly to the yeast form of the microorganism (yeast form more than 90% of total cells) and the formation of pigment in the culture being prevented. Small amounts of pullulan (less than 2 g l–1) are produced at this phase, and the viscosity remained low throughout the entire growth stage. When the oil and glutamate source were nearly exhausted (below 5% of initial amounts), the cells were shifted to a production stage with sucrose as the carbon source with continued nitrogen depletion. Production of pullulan started immediately with no lag period. During 50 h of the production phase more than 35 g l–1 of pullulan was produced (productivity approx. 0.7 g l–1), resulting in a large increase in the viscosity of the broth. The production yield of pullulan on the sugar was about 0.6 g g–1. Morphogenesis from the yeast form of the microorganism to chlamydospores was still restrained and no pigment was formed in the culture during the production stage. A pigment-free polysaccharide, with a molecular mass in the range of 600–750 kDa, was recovered from the supernatant of the broth after solvent precipitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 35 (1990), S. 103-107 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 869-876 
    ISSN: 0006-3592
    Keywords: fermentation ; pervaporation ; immobilized yeast ; S. cerevisiae ; ethanol ; membrane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A system comprised of an immobilized yeast reactor producing ethanol, with a membrane pervaporation module for continuously removing and concentrating the produced ethanol, was developed. The combined system consisted of two integrated circulation loops: In one the sugar-containing medium is circulated through the membrane pervaporation module. The two loops were interconnected in a way allowing for separate parameter optimization (e.g., flow rate, temperature, pH) for each loop.The fermentation unit was 2.0 L bioreactor with five equal segments, packed with 5-mm beads of immobilized yeasts. The bead matrix was a crosslinked polyacrylamide hydrazide gel coated with calcium alginate. The fast circulation loop of the bioreactor allowed for efficient liberation of CO2 at the top of the immobilized yeast reactor. Continuous operation of the uncoupled reactor for over 50 days with inflowing defined medium or dilute molasses at a residence time of 1.25 h yielded ethanol at a rate of about 10 g/L h.The pervaporation unit was constructed from four 60-cm-long tubular membranes of silicone composite on a polysulfone support. The output from the fermentor was circulated through the inside of the tubes of a unit with a total surface area of 800 cm2, having an average flux of 150 mL/h, and selectivities to ethanol vs. water up to 7. A vacuum of 30 mb was applied to the outside of the tubes, removing 20-30 g of ethanol per hour, which was collected in condensors. The continuous removal of ethanol, avoiding inhibition of the fermentation process, resulted in an improved productivity and allowed the use of high sugar concentrations (40% wt/vol) offering the potential of a compact system with reduced stillage.The combined system of ethanol production and removal enabled an operative steady state at which the liquid volume of the system, and the concentrations of ethanol within the reactor (˜4% wt/vol), as well as within the flux crossing the pervaporation membrane (17%-20% wt/vol) were kept constant. At the steady state, a 40% wt/vol sugar solution could be continuously added to the fermentor when 12%-20% wt/vol clear ethanol solution was continuously removed by the pervaporation unit. Membrane fouling was reversed by short washing steps, and continuous step operation was maintained by working with two different modules that were interchanged. In this manner, long term continuous operation (over 40 days) was achieved with a productivity of 20-30 g/L h, representing over a twofold increase relative to the continuously operated reactor uncoupled from the membrane and a fivefold increase in comparison with the value obtained fro a corresponding batch fermentation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 501-510 
    ISSN: 0006-3592
    Keywords: Aureobasidium pullulans ; fermentation ; fuzzy logic ; image processing ; morphogenesis ; neural network ; pullulan ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A prototype of a self-tuning vision system (STVS) has been developed to monitor cell population in fermentations. The STVS combines classical image processing techniques, neural networks and fuzzy logic technologies. By combining these technologies the STVS is able to analyze sampled images of the culture. The proposed system can be “tailored” with minimum effort by an expert who can “teach” the system to recognize cells by showing examples of different morphologies. After adaptation, the STVS is able to capture images, isolate the different cells, classify them according to the expert's criteria, and provide the profile of the cell's population. The system was applied to the classification and analysis of Aureobasidium pullulans. The importance of understanding the changes of population distribution during the fermentation and its effect in the production of pullulan are emphasized. The STVS can be used for monitoring and control of the cell population in small research fermentors or in large-scale production.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...