Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: This paper provides further evidence for the ongoing discussion as to whether the Dabie UHPM belt formed in Triassic or Palaeozoic time, and whether the Sulu UHPM belt formed in Triassic or Neoproterozoic time. Combined use of laser Raman spectrometer (LR), cathodoluminescence imaging (CL), and ion probe U–Pb in-situ dating (SHRIMP) provided accurate ages of UHPM from rocks collected from Weihai, NE Sulu UHPM belt. LR was used to identify coesite and other UHP minerals as inclusions in zircon separates from an amphibolized peridotite and an eclogite. CL was used to examine the zoning structure of these zircon, and SHRIMP dating was performed on specific spots on zircon to obtain ages of different geological events. An age of 221 ± 12 Ma was obtained for coesite-bearing zircon from the amphibolized peridotite; an age of 228 ± 29 Ma for eclogite was obtained from the lower intercept of a concordia plot. These ages are interpreted as the time of UHPM in the Weihai region. Ultramafic rocks to the east of Weihai yield a magmatic age at 581 ± 44 Ma. The zircon in the ultramafic rocks possibly also records a thermal event at c. 400 Ma, but no independent geological evidence for this event has been found. The eclogite protolith formed in the Middle Proterozoic (1821 ± 19 Ma), which is similar to the age of country rock gneisses of 1847–1744 Ma. The new geochronological data confirm that UHPM occurred in the Triassic in the Sulu area when subduction took the ultramafic body and the eclogite protolith, together with the adjacent supracrustal rocks, to mantle depths.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Widespread evidence for ultrahigh-pressure (UHP) metamorphism is reported in the Dulan eclogite-bearing terrane, the North Qaidam–Altun HP–UHP belt, northern Tibet. This includes: (1) coesite and associated UHP mineral inclusions in zircon separates from paragneiss and eclogite (identified by laser Raman spectroscopy); (2) inclusions of quartz pseudomorphs after coesite and polycrystalline K-feldspar + quartz in eclogitic garnet and omphacite; and (3) densely oriented SiO2 lamellae in omphacitic clinopyroxene. These lines of evidence demonstrate that the Dulan region is a UHP metamorphic terrane. In the North Dulan Belt (NDB), eclogites are characterized by the peak assemblage Grt + Omp + Rt + Phn + Coe (pseudomorph) and retrograde symplectites of Cpx + Ab and Hbl + Pl. The peak conditions of the NDB eclogites are P = 2.9–3.2 GPa, and T = 631–687 °C; the eclogite shows a near-isothermal decompression P–T path suggesting a fast exhumation. In the South Dulan Belt (SDB), three metamorphic stages are recognized in eclogites: (1) a peak eclogite facies stage with the assemblage Grt + Omp + Ky + Rt + Phn at P = 2.9–3.3 GPa and T = 729–746 °C; (2) a high-pressure granulite facies stage with Grt + Cpx (Jd 〈 30) + Pl (An24–29) + Scp at P = 1.9–2.0 GPa, T = 873–948 °C; and (3) an amphibolite facies stage with the assemblage Hbl + Pl + Ep/Czo at P = 0.7–0.9 GPa and T = 660–695 °C. The clockwise P–T path of the SDB eclogites is different from the near-isothermal decompression P–T path from the NDB eclogites, which suggests that the SDB was exhumed to a stable crustal depth at a slower rate. In essence these two sub-belts formed in different tectonic settings; they both subducted to mantle depths of around 100 km, but were exhumed to the Earth's surface separately along different paths. This UHP terrane plays an important role in understanding continental collision in north-western China.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...