Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Thirty minutes of insulin-induced reversible hypoglycemic coma (defined in terms of cessation of EEG activity) was produced in anesthetized rats. At the end of the hypoglycemic coma or after recovery for 3, 24, or 72 h induced by glucose infusion, the animals were reanesthetized and their brains frozen in situ. Two control groups were used: untreated controls without prior manipulations, and insulin controls, which received injections of insulin followed by glucose infusion to maintain blood glucose within the physiological range. The brains of these latter animals were frozen 3, 24, or 72 h after glucose infusion. Tissue samples from the cortex, striatum, hippocampus, and thalamus were taken to measure ornithine decarboxylase (ODC) activity, and putrescine and spermidine levels, as well as phosphocreatine (PCr), ATP, glucose, and lactate content. In addition, 20-μm thick coronal sections taken from the striatum and dorsal hippocampus were used for histological evaluation of cell damage and also stained for calcium. Insulin in the absence of hypoglycemia produced a significant increase in ODC activity and putrescine level but had no effect on the profiles of energy metabolites or spermidine. During hypoglycemic coma, brain PCr, ATP, glucose, and lactate levels were sharply reduced, as expected. Energy metabolites normalized after 3 h of recovery. In the striatum, significant secondary decreases in PCr and ATP contents and rises in glucose and lactate levels were observed after 24 h of recovery. ODC activity, and putrescine and spermidine levels were unchanged during hypoglycemic coma. After 3 h of recovery, ODC activity increased markedly throughout the brain, except in the striatum. After 24 h of recovery, ODC activity decreased and approached control values 2 days later. Putrescine levels increased significantly throughout the brain after reversible hypoglycemic coma, the highest values observed after 24 h of recovery (p≤ 0.001, compared with controls). After 72 h of recovery, putrescine levels decreased, but still significantly exceeded control values. Reversible hypoglycemic coma did not produce significant changes in regional spermidine levels except in the striatum, where an approximately 30% increase was observed after 3 and 72 h of recovery (p≤ 0.01 and p≤ 0.05, respectively). Twenty-four hours after hypoglycemic coma, intense calcium staining was apparent in layer III of the cerebral cortex, the lateral striatum, and the crest of the dentate gyrus. After 72 h of recovery, the intense calcium staining included also cortical layer II, the septal nuclei, the subiculum, and the hippocampal CA1-subfield. Changes in polyamine metabolism thus preceded the intense calcium staining in the brain. The results indicate that reversible hypoglycemic coma induces a sharp increase in putrescine level comparable to that observed previously after cerebral ischemia. We, therefore, conclude that the increase in putrescine content is an early biochemical marker of delayed neuronal cell necrosis irrespective of the pathogenesis of this injury. The possible role of polyamines in the manifestation of neuronal necrosis following hypoglycemic coma is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 46 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The objective of the present study was to estimate extracellular pH (pHe) and intracellular pH (pHi) during near-complete forebrain ischemia in the rat, and to evaluate the relative importance of lactic acidosis and rise in tissue Pco2, (Ptco2) in causing pHe and pHi to fall. The animals, which were ventilated, normoxic, normocapnic, and normothermic, were subjected to 15 min of ischemia, either without or with 30–60 min of recirculation. Ptco, was measured with a tissue electrode, pH, with a double-barrel liquid ion-exchanger microelectrode, changes in extracellular fluid (ECF) volume by impedance measurements, tissue CO, content by a microdiffusion technique, and labile tissue metabolites by enzymatic fluorometric methods. Ischemia caused Ptco2 to rise to between 95 and 190 mm Hg (mean 149 mm Hg), and pH, to fall by 0.45–1.05 units (mean 0.70 units). During recovery, Ptco, normalized within 5 min and pHe after 15–30 min. During ischemia, high-energy phosphates were depleted and tissue lactate content increased to 15 μmol · g−1. The total CO2 content (Tco2) was minimally or moderately reduced (normal, 11.9 μmol · g−1; range of ischemic values, 7.9–12.1 μmol · g0-, this range probably reflecting variable amounts of remaining blood flow. Impedance measurements demonstrated that ECF volume during ischemia was reduced to 55% of control, with gradual normalization during the first 15–30 min of recirculation. From values for Ptco2, Tco2, [HCO3−]e, and ECF volume, [HCO3−]i, and pH, could be calculated. These values pertain to an idealized homogeneous intracellular compartment, and the methods used cannot detect whether different intracellular compartments diverge in their acid-base responses. Ischemia caused pH, to fall from 7.05 to a mean of 6.15 (range 5.9–6.4). Previous data, and those obtained at present, suggest that pH, normalizes after 15 min of recirculation, with a subsequent, secondary alkalosis. Calculations indicate that about half of the pH, change was due to the hypercapnia. In intracellular fluid, though, the hypercapnia must play a minor role in reducing pH, the predominate cause of the acidosis being lactic acid production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 62 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The present study was undertaken to explore how transient ischemia in rats alters cerebral metabolic capacity and how postischemic metabolism and blood flow are coupled during intense activation. After 6 h of recovery following transient forebrain ischemia 15 min in duration, bicuculline seizures were induced, and brains were frozen in situ after 0.5 or 5 min of seizure discharge. At these times, levels of labile tissue metabolites were measured, whereas the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) were measured after 5 min of seizure activity. After 6 h of recovery, and before seizures, animals had a 40–50% reduction in CMRO2, and CBF. However, because CMRO2 rose threefold and CBF fivefold during seizures, CMRO2 and CBF during seizures were similar in control and postischemic rats. Changes in labile metabolites due to the preceding ischemia encompassed an increased phosphocreatine/ creatine ratio, as well as raised glucose and glycogen concentrations. Seizures gave rise to minimal metabolic perturbation, essentially comprising reduced glucose and glycogen contents and raised lactate concentrations. It is concluded that although transient ischemia leads to metabolic depression and a fall in CBF, the metabolic capacity of the tissue is retained, and drug-induced seizures lead to a coupled rise in metabolic rate and blood flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— The objective of the present experiments was to correlate changes in cellular energy metabolism, dissipative ion fluxes, and lipolysis during the first 90 s of ischemia and, hence, to establish whether phospholipase A2or phospholipase C is responsible for the early accumulation of phospholipid hydrolysis products. Ischemia was induced for 15–90 s in rats, extracellular K+ (K+e) was recorded, and neocortex was frozen in situ for measurements of labile tissue metabolites, free fatty acids, and diacylglycerides. Ischemia of 15-and 30-s duration gave rise to a decrease in phosphocreatine concentration and a decline in the ATP/free ADP ratio. Although these changes were accompanied by an activation of K+ conductances, there were no changes in free fatty acids until after 60s, when free arachidonic acid accumulated. An increase in other free fatty acids and in total diacylglyceride content did not occur until after anoxic depolarization. The results demonstrate that the early functional changes, such as activation of K+ conductances, are unrelated to changes in lipids or lipid mediators. They furthermore suggest that the initial lipolysis occurs via both phospholipase A2 and phospholipase C, which are activated when membrane depolarization leads to influx of calcium into cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The objective of the present study was to explore mechanisms responsible for activation of ion conductances in the initial phases of brain ischemia, particularly for the early release of K+ that precedes massive cell depolarization, and rapid downhill fluxes of K+, Na+, Cl−, and Ca2+. As it has been speculated that a K+ conductance can be activated either by an increase in the free cytosolic calcium concentration (Ca2+i) or by a fall in ATP concentration, the question arises whether the early increase in extracellular K+ concentration (K+e) is preceded by a rise in Ca2+i and/or a fall in ATP content. In the present experiments, ischemia was induced in rats by cardiac arrest, the time courses of the rise in K+e and cellular depolarization were determined by microelectrodes, and the tissue was frozen in situ through the exposed dura for measurements of levels of labile metabolites, including adenine nucleotides and cyclic AMP (cAMP), after ischemic periods of 15, 30, 60, and 120 s. Conversion of phosphorylase b to a was assessed, because it depends, among other things, on changes in Ca2+i. The K+e value rose within a few seconds following induction of ischemia, but massive depolarization (which is accompanied by influx of calcium) did not occur until after ∼65 s. Activation of phosphorylase was observed already after 15 s and before glycogenolysis had begun. At that time, 3′,5′-cAMP concentrations were unchanged, and total 5′-AMP concentrations were only moderately increased. The results demonstrate that a K+ conductance is activated at a time when the overall ATP concentration remains at 95% of control values. If major compartmentation can be excluded, the results fail to demonstrate that an ATP-activated K+ conductance is involved. In view of the early activation of phosphorylase, one may speculate that the triggering event is a rise in Ca2+i.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Several previous studies have demonstrated that severe hypoglycemia is accompanied by consumption of endogenous brain substrates (glycolytic and citric acid cycle metabolites and free amino acids) and some have shown a loss of structural components as well, notably phospholipids. In the present study, on paralysed and artificially ventilated rats, we measured cerebral oxygen and glucose consumption during 30 min of hypoglycemic coma (defined as hypoglycemia of sufficient severity to cause cessation of spontaneous EEG activity) and calculated the non-glucose oxygen consumption. In an attempt to estimate the missing substrate we measured tissue concentrations of phospholipids and RNA.After 5 min of hypoglycemic coma, tissue phospholipid content decreased by about 8% with no further change during the subsequent 55 min. A similar reduction remained after 90 min of recovery, induced by glucose administration following 30 min of coma. Since no preferential loss of polyenoic fatty acids or of ethanolamine phosphoglycerides occurred, it is concluded that loss of phospholipids was due to phospholipase activity rather than to peroxidative degradation. The free fatty acid concentration increased sixfold after 5 min of coma and remained elevated during the course of hypoglycemia. A 9% reduction in tissue RNA content was observed after 30 min of hypoglycemia.Calculations indicated that available endogenous carbohydrate and amino acid substrates were essentially consumed after 5 min of coma, and that other non-glucose substrates must have accounted for approximately 50μmol·g−1 of oxygen (8.3 μmol·g−1 in terms of glucose equivalents) within the 5–30 min period. The 10% reduction in phospholipid-bound fatty acids was more than sufficient (in four- to fivefold excess) to account for this oxygen consumption. However, since no further degradation occurred in the 5–30 min period, there is no simple, direct, quantitative relationship between oxygen consumption and cortical fatty acid oxidation during this interval. The possibility thus remains that unmeasured exogenous or endogenous substrates were utilized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Brains of paralysed rats with insulin-induced hypoglycemia were frozen in situ after spontaneous EEG activity had been absent for 5 or 15 min (“coma”). Recovery (30 min) was achieved in a different group of rats by administering glucose after a 30-min coma period. Purine and pyrimidine nucleotides, nucleosides and free bases were determined in the cortical extracts by high pressure liquid chromatography (HPLC). The ATP values obtained with the HPLC method were in excellent agreement with those obtained using standard enzymatic/fluorometric techniques, while values for ADP and AMP obtained with the HPLC method were significantly lower. Comatose animals showed a severe (40-80%) reduction in the concentrations of all nucleoside triphosphates (ATP. GTP, UTP and CTP) and a simultaneous increase in the concentrations of all nucleoside di- and monophosphates, including that of IMP. The adenine nucleotide pool size decreased to 50% of control level. The concentrations of the nucleosides adenosine, inosine, and uridine increased 50- to 250-fold, while the concentrations of the purine bases, xanthine and hypoxanthine, rose 2- and 30-fold, respectively. There were no increases in the concentrations of adenine, guanine, or xanthosine. Following glucose administration there was a partial (ATP, UTP and CTP) or almost complete (GTP) recovery of the nucleoside triphosphate levels. During recovery, the levels of nucleosidc di- and monophosphates and of adenosine decreased to values close to control; the rise in the inosine level was only partially reversed, and the concentrations of hypoxanthine and xanthine rose further. The adenine nucleotide pool size was only partially restored (to 67% of control value). The adenine nucleotide pool size was not increased by i.p. injection of adenosine or adenine under control condition, or during the posthypoglycemic recovery period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 37 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— The objective of the present experiments was to study metabolic correlates to the localization of neuronal lesions during sustained seizures. To that end, status epilepticus was induced by i.v. administration of bicuculline in immobilized and artificially ventilated rats, since this model is known to cause neuronal cell damage in cerebral cortex and hippocampus but not in the cerebellum. After 20 or 120 min of continuous seizure activity, brain tissue was frozen in situ through the skull bone, and samples of cerebral cortex, hippocampus, and cerebellum were collected for analysis of glycolytic metabolites, phosphocreatine (PCr), ATP, ADP, AMP, and cyclic nucleotides. After 20 min of seizure activity, the two “vulnerable” structures (cerebral cortex and hippocampus) and the “resistant” one (cerebellum) showed similar changes in cerebral metabolic state, characterized by decreased tissue concentrations of PCr, ATP, and glycogen, and increased lactate concentrations and lactate/ pyruvate ratios. In all structures, though, the adenylate energy charge remained close to control. At the end of a 2-h period of status epilepticus, a clear deterioration of the energy state was observed in the cerebral cortex and the hippocampus, but not in the cerebellum. The reduction in adenylate energy charge in the cortex and hippocampus was associated with a seemingly paradoxical decrease in tissue lactate levels and with failure of glycogen resynthesis (cerebral cortex). Experiments with infusion of glucose during the second hour of a 2-h period of status epilepticus verified that the deterioration of tissue energy state was partly due to reduced substrate supply; however, even in animals with adequate tissue glucose concentrations, the energy charge of the two structures was significantly lowered. The cyclic nucleotides (cAMP and cGMP) behaved differently. Thus, whereas cAMP concentrations were either close to control (hippocampus and cerebellum) or moderately increased (cerebral cortex), the cGMP concentrations remained markedly elevated throughout the seizure period, the largest change being observed in the cerebellum. It is concluded that although the localization of neuronal damage and perturbation of cerebral energy state seem to correlate, the results cannot be taken as. evidence that cellular energy failure is the cause of the damage. Thus, it appears equally probable that the pathologically enhanced neuronal activity (and metabolic rate) underlies both the cell damage and the perturbed metabolic state. The observed changes in cyclic nucleotides do not appear to bear a causal relationship to the mechanisms of damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The occurrence of peroxidative damage, as distinguished from anaerobic damage, to brain fatty acids and phospholipids was characterized in vitro. Fe2+ and ascorbic acid were used to stimulate peroxidation in cortical homogenates from rat brain incubated with or without oxygen. Lipid peroxidation was established in samples incubated with oxygen by increased diene conjugation, accumulation of thiobarbituric acid-reactive material (TBAR) and of lipid-soluble fluorescent products. No peroxidation occurred in samples incubated in the absence of oxygen (100% N2). Lipid peroxidation was characterized by a selective loss of arachidonic acid and docosahexaenoic acid and by degradation of ethanolamine phosphoglyceride, while choline phosphoglyceride did not change. During the course of peroxidation there were parallel increases in products of lipid peroxidation concomitant with the decrease in polyenoic fatty acids. The maximal changes in diene conjugation and TBAR occurred earlier than the maximal changes in fluorescent material and fatty acids. It is concluded that measurements of changes in brain fatty acid and phospholipid composition may be a useful tool to establishment of whether peroxidative damage is important in vivo in situations with a critically reduced oxygen supply. Estimation of lipid-soluble fluorescence in vivo may also be useful, since it is considered to reflect the accumulation of stable end products of peroxidation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 32 (1979), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In order to test the proposition that hypoxia leads to a change in the concentration ratio of reduced (GSH) and oxidized (GSSG) glutathione in the brain, enzymatic, fluorometric assays were worked out for measuring GSH and GSSG. In lightly anaesthetized and immobilized rats. GSH concentrations in the cerebral cortex and the cerebellum were close to 2 μmol.g-1 while a slightly lower concentration (approx 1.4μmol.g-1) was found in the brain stem. In order to avoid artefactual oxidation of GSH during sample preparation for GSSG determination the tissue was extracted with trichloroacetic acid, following alkylation of SH groups with N-ethylmaleimide. With these precautions GSSG concentrations were approx 0.7% of the corresponding GSH concentrations. However. the results indicated that the true GSSG concentrations may be even lower. During hypoxia there was neither a decrease in GSH nor an increase in GSSG concentrations in cortical tissue or cisternal CSF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...