Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The brittleness of polystyrene (PS) and the toughness but notch sensitivity of polycarbonate (PC) have been studied by the detailed finite element analyses of the stress and strain fields in a notched tensile bar with a minor defect. The defect represented a flaw or imperfection, generated during the test specimen production. The large-strain mechanical responses of both materials were approximated by an accurate elasto-viscoplastic constitutive model with appropriate material parameters. It was assumed that failure occurs instantaneously once the dilative stress exceeds a certain critical craze-initiation stress. The analyses show that the unstable post-yield mechanical response of both materials results in localisation of stresses and strains near the defect at a very low macroscopic strain (0.16%). As a result, a strong dilative stress concentration is formed just below the surface of the defect. For the polystyrene specimen, the critical stress is reached at the defect. For the polycarbonate, however, the effect of the stress concentrating defect was counteracted by a higher craze-initiation stress and stronger strain hardening. The PC craze-initiation resistance, however, did not suffice to overcome the dilative stress concentration raised by the notch tip.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The influence of microstructural properties on the macroscopic mechanical behaviour has been studied by finite element predictions of the response of different microstructures of polystyrene (PS) or polycarbonate (PC) containing voids or rubbery particles, subjected to unidirectional extension. The voids represent a low-modulus non-adhering dispersed phase. The rubbery inclusions, which are assumed to be pre-cavitated and perfectly adhering, idealise core-shell particles with a hard rubber shell and a soft non-adhering or pre-cavitated core. The predictions show that the inclusion properties strongly affect the averaged post-yield response of the heterogeneous systems. Especially the post-yield strain softening can be eliminated by the introduction of voids in PC or rubbery particles in PS. Since macroscopic strain softening is believed to be the main cause of catastrophical stress or strain localisations, the softening elimination is believed to be primarily responsible for toughness enhancement of the polystyrene or polycarbonate systems. The results and experiences are extrapolated in order to explain the influence of the absolute length scale of a sub-micron sized morphology on the macroscopic behaviour, especially toughness. Two potential sources of particle-size effects are presented that may result in a stabilised, and thus tougher, macroscopic mechanical response, i.e. the yield stress reduction near a surface or interface because of a locally enhanced mobility of the polymer segments, and the temporary excessive hardening because of a sufficiently small size of the yield zones which results in a reduced effective entanglement distance. The paper concludes with a discussion on the extension of this knowledge to all other, for the moment amorphous, polymers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The deformation behaviour of heterogeneous tensile bars is investigated by using the recently developed multi-level finite element method (MLFEM) that allows for a numerical coupling between the microscopic and macroscopic stress-strain behaviour, combined with an accurate elasto-viscoplastic constitutive model (single-mode compressible Leonov model) and a detailed finite element model of the microstructure. The method is used to predict the influence of the microstructure on localisation phenomena in plane strain notched and hour-glass-shaped polycarbonate and polystyrene tensile specimen with different volume fractions of non-adhering or adhering rubbery particles. In Part I and II of this series it was already suggested that elimination of the unstable post-yield strain softening behaviour of a polymeric material by appropriate microstructural modifications may be essential for toughening. The results of the multi-level analyses presented in this paper confirm this statement. It is shown that a stable post-yield response, resulting from microstructural adaptations, is indeed a prerequisite for the distribution of plastic strains over the whole macro- and microstructure: massive shearing is promoted by the introduction of voids in the polycarbonate or load bearing pre-cavitated rubbery particles in the polystyrene. Furthermore, it is shown that the voids indeed reduce the macroscopic dilative stresses to safe values. The results suggest that localisations of strain and stress will always occur on a macro and/or micro level. Catastrophic failure, however, can be postponed by stabilisation of the post-yield behaviour of the material and reduction of the macroscopic dilative stresses through appropriate microstructural adjustments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...