Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 123 (1985), S. 597-609 
    ISSN: 1420-9136
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The characteristics of and the evolution between snow, rain, ice pellets, and freezing rain are discussed. Precipitation type and the nature of its size distribution and extent are related to the melting behaviour of snow. Model calculations of this melting show the progression of precipitation type from freezing rain to ice pellets and finally to snow, as melting systematically erodes an upper level inversion within about 5 h for a precipitation rate of 1mm h−1. The increase in temperature of the low level subfreezing region associated with ice pellet formation (up to ≈ 1°C) should furthermore be detectable. These phase transitions between the various precipitation types, as affected by atmospheric cooling by melting, are predicted to occur over mesoscale distances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The movements of surface cold and warm fronts and low pressure centres have been observed in several Atlantic Canada winter storms. Statistical aspects of the ‘well-defined’ surface fronts (7 warm and 6 cold) are presented. Surface wind direction change was considered as the best indicator of the boundaries of the front; frontal zone widths ranged from 23 to 144 km. Average values of wind shifts were 107° for the cold fronts and 85° for warm fronts. Several case studies are presented, based primarily on surface MesoNet data (near Halifax, Nova Scotia and on Sable Island). In two of the cold fronts, there was a two-stage surface structure and rapid evolution as the front passed over the MesoNet. In some cases, both warm and cold, the wind shift and temperature change were coincident while in others they were not. In particular we observed that wind shifts often started 20–30 min ahead of the start of a temperature decrease in these cold frontal passages. A possible mechanism for this is discussed. We found little or no evidence of along-front structure in our data although other investigators have found considerable along-front variation on scales of 0(10 km). Observations of the passage of one low pressure centre are presented. In a second case, surface temperature changes indicated an apparent low pressure centre passage through the Sable Island MesoNet but closer inspection provides an alternative interpretation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...