Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 6786-6794 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transition of materials from low resistivity to comparatively high resistivity can be utilized for current limitation, enabling permanent fuses that do not have to be replaced after an overload or short-circuit operation. An interesting class of materials for this purpose are particulate filled polymer composites with a strong positive temperature coefficient (PTC) of resistivity. If an applied current becomes too high, the PTC element is heated to its critical temperature and trips from the conducting into the insulating state. The dynamic heating of the composite upon current flow is described by a one-dimensional model. It is predicted that the heating of a composite depends on the size of the filler particles. Smaller filler particles should allow a faster heating and, hence, a better limitation of the current. Experimental verification is performed using composite of TiB2 particles in a polyethylene matrix. Commercial TiB2 powders with different particle-size distributions between 1 and 200 μm were used. The specific resistivity of the composites is small, in the range of 0.01–0.02 Ω cm. Around the melting temperature of the polymer, the resistivity increases within only 20 °C by seven orders of magnitude. In order to verify the expected dependence of the switching dynamic on the filler particle size, the tested elements had comparable electrical characteristics. Samples were prepared having, to a certain degree, the same specific resistivity, cross section, and total resistance. Free parameters were the length, and for some samples, the filler content. Short-circuit experiments show that for decreasing particle size the time until the material trips into the high-resistive state becomes shorter. The best current limitation occurs for composites containing particles in the range of 1–45 μm. Current limitation starts already after 150 μs, and a current density of up to 10 kA/cm2 can be switched off within a further 200 μs. The experiments are in excellent agreement with the predictions from theory. Due to the low resistance in the cold state and the very fast limitation of electrical currents, PTC elements based on conducting polymers can be highly attractive for power applications. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 57 (1990), S. 2422-2424 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Erbium-substituted La1−xErxF3 lanthanum trifluoride epitaxial layers have been grown on Si(111) substrates by molecular beam epitaxy (MBE). Strong near-infrared luminescence, peaked at 1.54 μm, was observed from such films under electron beam excitation. This cathodoluminescence arises from the intra-4f-shell transitions 4I13/2→4I15/2 of Er3+(4f11). The infrared spectra reveal that MBE-grown LaF3 layers on Si(111) crystallize in the hexagonal tysonite structure, typical for bulk LaF3 single crystals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0630
    Keywords: 72.20.Ht ; 72.80.Sk ; 78.30.Ly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this contribution we have studied the key electrical parameters of silica aerogels and of silica-aerogel-based composites, namely the dielectric constants ɛ, the dielectric losses tan δ (at 1 kHz), and the breakdown fields E b (at 50 Hz). For low-density bulk silica aerogels we find ɛ=1.25 and tan δ=0.0005. E b is about 500 kV/cm in quasi-homogeneous fields, and of the order of MV/cm in strongly inhomogeneous fields. The dielectric constants of partially densified aerogels increase linearly with density; their dielectric losses are relatively large and their breakdown fields are comparativiely low. The same results are found for aerogels in the form of settled materials, i.e. aerogel granules and powders in air. Acrylate-based aerogel composites with volume fractions larger than 70% have low dielectric constants but their losses are at least 10 times higher than those of low-density aerogels. These materials sustain high local fields in the MV/cm region, while in quasihomogeneous fields, breakdown occurs at about 100 kV/cm. Based on the present results and the interplay with other physical properties (low mechanical resistance, low thermal conductivity, adsorption of water, etc.), silica aerogels and silica aerogel-acrylate-based composites are predicted to have a low potential for electrical insulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 31 (1996), S. 5941-5944 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract New varistor-type polymer composites for low-voltage application have been developed. The filler is made of commercially available doped ZnO-varistor powder. The polycrystalline filler particles act as varistors due to their typical grain-boundary structure. The presented varistor composite materials show very low values for the breakdown field strength down to 200 V mm−1, as compared with already existing varistor-type composites, and fairly highα-values in the range of 10.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...