Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theory of computing systems 17 (1984), S. 335-350 
    ISSN: 1433-0490
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This is the first of two papers concerned with the formulation of a continuous-time quantum-mechanical filter. Efforts focus on a quantum system with Hamiltonian of the formH 0+u(t)H 1, whereH 0 is the Hamiltonian of the undisturbed system,H 1 is a system observable which couples to an external classical field, andu(t) represents the time-varying signal impressed by this field. An important problem is to determine when and how the signalu(t) can be extracted from the time-development of the measured value of a suitable system observableC (invertibility problem). There exist certain quasiclassical observables such that the expected value and the measured value can be made to coincide. These are called quantum nondemolition observables. The invertibility problem is posed and solved for such observables. Since the physical quantum-mechanical system must be modelled as aninfinite-dimensional bilinear system, the domain issue for the operatorsH 0,H 1, andC becomes nontrivial. This technical matter is dealt with by invoking the concept of an analytic domain. An additional complication is that the output observableC is in general time-dependent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theory of computing systems 18 (1985), S. 33-55 
    ISSN: 1433-0490
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This is the second of two papers concerned with the formulation of a continuous-time quantum-mechanical filter. In the first paper, the invertibility of a quantum system coupled to a weak time-dependent classical field was studied. The physical system is modelled as an infinite-dimensional bilinear system. Necessary and sufficient conditions for invertibility were derived under the assumption that the output observable is a quantum nondemolition observable (QNDO), characterized by the classical property that its expected value is equal to its measured value. In this paper necessary and sufficient conditions are developed for an observable to qualify as a QNDO; if in addition the criteria for invertibility are met, the given observable defines a quantum nondemolition filter (QNDF). The associated filtering algorithm thus separates cleanly into the choice of output observable (a QNDO) and the choice of procedure for processing the measurement outcomes. This approach has the advantage over previous schemes that no optimization is necessary. Applications to demodulation of optical signals and to the detection and monitoring of gravitational waves are envisioned.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 25 (1999), S. 281-293 
    ISSN: 1573-0409
    Keywords: human-robot cooperative control ; human and robot function heterogeneity ; human-friendly robotic operations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The objective of this paper is to develop an analytical scheme to integrate the heterogeneity of human and robot functions to achieve a human-friendly robotic operations. The heterogeneity of human and robot functions can be characterized by the fact that humans are intelligent while robots are fast, powerful and accurate. Humans can use their knowledge and experience to quickly respond to unexpected events, which makes it easy for humans to deal with unstructured environments. In contrast, robots can easily enhance the mechanical power of humans and the ability of humans to work remotely. Therefore, robots are capable of performing precise and repetitive tasks at high speed or in a hazardous environment. The important issue, in light of human/robot heterogeneity, is how to plan and control a robotic operation such that the human and the robot can cooperate in a complementary manner. Thus, a task which cannot be done by either human or robot alone can be performed efficiently and robustly by both. This paper introduces a new paradigm for human/robot interactive systems, heterogeneous function-based human/robot cooperation. A new perceptive action reference frame has been developed in the paper. It matches human perception and robot sensory measurement, and provides a platform for modeling the human/robot cooperative operations. The theoretical results presented in the paper have laid down a foundation for stability analysis as well as a planning and control system design of human/robot integrated systems. The implementations and experimental results have clearly demonstrated the advantages of proposed methods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mathematics of control, signals, and systems 12 (1999), S. 121-142 
    ISSN: 1435-568X
    Keywords: Key words. MIMO nonlinear systems, Global normal forms, Backstepping method, Global stabilization, Disturbance attenuation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mathematics , Technology
    Notes: Abstract. A geometric characterization of a class of square invertible nonlinear systems that can be molded into a normal form by a global diffeomorphism is detailed. Then additional conditions are fashioned that permit the implementation of the recursive design method known as “backstepping.”
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Autonomous robots 3 (1996), S. 269-283 
    ISSN: 1573-7527
    Keywords: underwater robotic vehicle ; hydrodynamic forces ; thruster dynamic model ; Kane's method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Development of a robust autonomous Underwater Robotic Vehicle (URV) is a key element to the exploitation of marine resources. An accurate dynamic model is important for both controller design and mission simulation, regardless of the control strategy employed. In this paper, a dynamic model for an underwater vehicle with an n-axis robot arm is developed based on Kane's method. The technique provides a direct method for incorporating external environmental forces into the model. The model developed in this paper includes four major hydrodynamic forces: added mass, profile drag, fluid acceleration, and buoyancy. The model derived is a closed form solution which can be utilized in modern model-based control schemes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theory of computing systems 21 (1989), S. 63-83 
    ISSN: 1433-0490
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This paper discusses the problem of using feedback and coordinates transformation in order to transform a given nonlinear system with outputs into a controllable and observable linear one. We discuss separately the effect of change of coordinates and, successively, the effect of both change of coordinates and feedback transformation. One of the main results of the paper is to show what extra conditions are needed, in addition to those required for input-output-wise linearization, in order to achieve full linearity of both state-space equations and output map.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...