Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Modification of fluorine-containing polymers has recently received much attention due to new chemistries allowing for refunctionalization of these materials, especially their surfaces. In this article results are discussed which demonstrate various interesting modifications (including incorporations of —OH and oxygen comprised functionality) to expanded poly(tetrafluoroethylene) (ePTFE) surfaces. This is effected through the use of low damage, radio frequency glow discharge (RFGD) processes. The low damage conditions, which preserve the original pore structure/morphology of these RFGD treated materials, are supported by Scanning Electron Microscopy (SEM) while the resulting atomic and molecular effects are investigated through other surface analytical methodology. All materials reported in this investigation have been subjected to intensive structural analyses utilizing Electron Spectroscopy for Chemical Analysis (ESCA), Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR), and wettability profiles obtained through contact angle measurements using a large series of liquids having varying surface tensions and surface reactive functionality. Through this multitechnique analysis of both expanded PTFE and poly(vinylidene fluoride) (PVDF) treated surfaces, a model is supported which illustrates surfaces possessing both high and low energy regions comprising both oxygen and fluorine functionality in close molecular proximity.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Recent work in our laboratories has fully characterized the surface region of a segmented poly(ether-urethane) (PEU) extending from the air/polymer interfacial region through bulk depths in the micron range. This characterization utilized energy and angle dependent Electron Spectroscopy for Chemical Analysis (ESCA), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and Comprehensive Wettability Profiling (contact angle using a homologous series of liquids) as defined by Zisman. In this study this same multi-analytical-technique approach is used to elucidate changes in these PEU surfaces induced through an H2O Radio Frequency Glow Discharge (RFGD) plasma. This investigation reports both qualitative and quantitative changes due to the modification treatments as well as the permanency of the changes effected on these surfaces through the plasma treatment. From our analyses, the amount of surface residing polyurethane (hard segment) is observed to increase due to a proposed plasma etching mechanism. Further, the addition of oxygen containing functionality is detected at the modified surfaces unique with respect to the unmodified PEU. These surface modifications which show large increases in wettability, are finally observed to be semi-permanent over a time period of 6 months.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 1267-1286 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The surfaces of poly(methyl methacrylate) (PMMA) films modified by O2H2O and H2O radio-frequency glow discharge plasmas were studied using electron spectroscopy for chemical analysis (ESCA or XPS), low energy ion scattering (LEISS or ISS), Fourier transform IR spectroscopy (FTIR) with attenuated total reflectance (ATR) sampling, and critical surface energy from contact angle measurements. The extent and nature of modification with respect to promotion of a hydrophilic surface compared to the hydrophobic surface of the unmodified PMMA has been probed. Results show drastic decreases in C/O ratio at the near surface, which increases to that of the unmodified PMMA as deeper cross sections are analyzed. In addition peak fitting of ESCA data correlated with FTIR functional group information allows for the qualitative and quantitative analysis of the resulting bonding and structure of the modified layer. From these results combined with the polarity and surface energy differences obtained from contact angle measurements, the structural changes are discussed with respect to plasma reaction mechanisms and differences in the structure of the modified polymer films.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Material surfaces that can mediate cellular interactions by the coupling of specific cell membrane receptors may allow for the design of a biomaterial that can control cell attachment, differentiation, and tissue organization. Cell adhesion proteins have been shown to contain minimum oligopeptide sequences that are recognized by cell surface receptors and can be covalently immobilized on material surfaces. In this study, cell attachment to fluorinated ethylene propylene (FEP) films functionalized with the laminin-derived oligopeptides, YIGSR and a 19-mer IKVAV-containing sequence, was assessed using NG108-15 neuroblastoma and PC12 cells. A radiofrequency glow discharge (RFGD) process that replaces the FEP surface fluorine atoms with reactive hydroxyl functionalities was used to activate the film surfaces. The oligopeptides were then covalently coupled to the surface by their C-terminus using a standard nucleophilic substitution reaction. The covalent attachment of the oligopeptides to the FEP surface was verified using electron spectroscopy for chemical analysis (ESCA). Receptor-mediated NG108-15 cell attachment on the YIGSR-modified films was determined using competitive binding assays. Average cell attachment on the oligopeptide immobilized films in medium containing soluble CDPGYIGSR was reduced by approximately a factor of 2, compared to cell attachment in serum-free medium alone. No significant decrease in cell attachment was noted in medium containing the mock oligopeptide sequence CDPGYIGSK. FEP films immobilized with the 19-mer IKVAV sequence demonstrated a higher percentage of receptor mediated cell attachment on the film surfaces. A sixfold decrease in PC12 cell attachment occurred on the oligopeptide immobilized films in a competitive binding assay medium containing the soluble IKVAV oligopeptide compared to cell attachment in serum-free medium alone. These results demonstrate that laminin oligopeptides can be covalently immobilized on an FEP material surface and analytically verified, and can mediate the receptor specific coupling of neuronal cells onto its surface. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The patterned covalent surface addition of a monoamine to fluorinated ethylene propylene films (FEP) controls both cellular attachment and differentiation in defined media conditions. A radio frequency glow discharge (RFGD) process was used to replace FEP surface fluorine atoms with hydroxyl groups. The primary amine was then covalently attached by polymerizing aminopropyl-triethoxysilane (APTES) via the hydroxyl functionalities. The selective attachment of cells to the APTES regions was determined to be dependent upon the initial adsorption of albumin to the patterned FEP membrane. Albumin was determined to enhance cellular attachment to the APTES regions and prevent attachment to the unmodified FEP areas for both an NB2a neuroblastoma cell line and primary rat endothelial cells. If albumin were not preadsorbed onto the membrane, selective attachment to the modified regions would not occur. Radiolabeling albumin with 125I demonstrated the preference of albumin for adsorption onto the monoamine surface where the cells preferentially attached. Both hydrophobic and ionic forces contributed to the adsorption process. Although selective cellular attachment to the patterned APTES regions could be achieved by albumin preadsorption to the surface, the neuroblastoma cells did not significantly differentiate unless additional serum components were supplemented to the media. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...