Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 543-554 
    ISSN: 0006-3592
    Keywords: encapsulation ; nerve regeneration ; cell transplantation ; polymers ; extracellular matrix ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The nervous system presents a challenge to the field of tissue engineering because some of its complex neurochemical and neuroanatomical architecture is just beginning to be understood. A combination of advances in molecular neurobiology, gene transfer techniques, and the concomitant advances in the engineering of biomaterials at a molecular level, are making tissue engineering in the nervous system possible. Due to the vast range of fields that this highly interdisciplinary task spans, any review is bound to be somewhat limited. Given that, this review attempts to cover some solutions engineered for: (a) the functional replacement of a missing neuroactive component; (b) the rescue or regeneration of degenerated neural tissue; and (c) the building of intelligent neural cell-based biosensors and simple in vitro neural circuits based on controlled neural cell attachment to electrically relevant substrates. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Material surfaces that can mediate cellular interactions by the coupling of specific cell membrane receptors may allow for the design of a biomaterial that can control cell attachment, differentiation, and tissue organization. Cell adhesion proteins have been shown to contain minimum oligopeptide sequences that are recognized by cell surface receptors and can be covalently immobilized on material surfaces. In this study, cell attachment to fluorinated ethylene propylene (FEP) films functionalized with the laminin-derived oligopeptides, YIGSR and a 19-mer IKVAV-containing sequence, was assessed using NG108-15 neuroblastoma and PC12 cells. A radiofrequency glow discharge (RFGD) process that replaces the FEP surface fluorine atoms with reactive hydroxyl functionalities was used to activate the film surfaces. The oligopeptides were then covalently coupled to the surface by their C-terminus using a standard nucleophilic substitution reaction. The covalent attachment of the oligopeptides to the FEP surface was verified using electron spectroscopy for chemical analysis (ESCA). Receptor-mediated NG108-15 cell attachment on the YIGSR-modified films was determined using competitive binding assays. Average cell attachment on the oligopeptide immobilized films in medium containing soluble CDPGYIGSR was reduced by approximately a factor of 2, compared to cell attachment in serum-free medium alone. No significant decrease in cell attachment was noted in medium containing the mock oligopeptide sequence CDPGYIGSK. FEP films immobilized with the 19-mer IKVAV sequence demonstrated a higher percentage of receptor mediated cell attachment on the film surfaces. A sixfold decrease in PC12 cell attachment occurred on the oligopeptide immobilized films in a competitive binding assay medium containing the soluble IKVAV oligopeptide compared to cell attachment in serum-free medium alone. These results demonstrate that laminin oligopeptides can be covalently immobilized on an FEP material surface and analytically verified, and can mediate the receptor specific coupling of neuronal cells onto its surface. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The patterned covalent surface addition of a monoamine to fluorinated ethylene propylene films (FEP) controls both cellular attachment and differentiation in defined media conditions. A radio frequency glow discharge (RFGD) process was used to replace FEP surface fluorine atoms with hydroxyl groups. The primary amine was then covalently attached by polymerizing aminopropyl-triethoxysilane (APTES) via the hydroxyl functionalities. The selective attachment of cells to the APTES regions was determined to be dependent upon the initial adsorption of albumin to the patterned FEP membrane. Albumin was determined to enhance cellular attachment to the APTES regions and prevent attachment to the unmodified FEP areas for both an NB2a neuroblastoma cell line and primary rat endothelial cells. If albumin were not preadsorbed onto the membrane, selective attachment to the modified regions would not occur. Radiolabeling albumin with 125I demonstrated the preference of albumin for adsorption onto the monoamine surface where the cells preferentially attached. Both hydrophobic and ionic forces contributed to the adsorption process. Although selective cellular attachment to the patterned APTES regions could be achieved by albumin preadsorption to the surface, the neuroblastoma cells did not significantly differentiate unless additional serum components were supplemented to the media. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 663-671 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The ability to organize cells in three dimensions (3D) is an important component of tissue engineering. This study sought to develop an extracellular matrix (ECM) equivalent with a physicochemical structure capable of supporting neurite extension from primary neural cells in 3D. Rat embryonic day 14 striatal cells and chick embryonic day 9 dorsal root ganglia extended neurites in 3D in agarose hydrogels in a gel concentration-dependent manner. Primary neural cells did not extend neurites above a threshold agarose gel concentration of 1.25% wt/vol. Gel characterization by hydraulic permeability studies revealed that the average pore radius of a 1.25% agarose gel was 150 mm. Hydraulic permeability studies for calculating average gel pore radius and gel morphology studies by environmental and scanning electron micrography showed that the average agarose gel pore size decreased exponentially as the gel concentration increased. It is hypothesized that the average gel porosity plays an important role in determining the ability of agarose gels to support neurite extension. Lamination of alternating nonpermissive, permissive, and nonpermissive gel layers facilitated the creation of 3D neural tracts in vitro. This ability of agarose hydrogels to organize, support, and direct neurite extension from neural cells may be useful for applications such as 3D neural cell culture and nerve regeneration. Agarose hydrogel substrates also offer the possibility of manipulating cells in 3D, and may be used as 3D templates for tissue engineering efforts in vitro and in vivo.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...