Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 1176-1178 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Zirconia–alumina transformation-toughening nanolaminates were fabricated by reactive sputter deposition. The average crystallite size and volume fraction of each zirconia polymorph were determined by x-ray diffraction. The volume fraction of tetragonal zirconia, the phase necessary for transformation toughening, was found to strongly depend upon the zirconia layer thickness. An end-point thermodynamics model involving hemispherical cap zirconia crystallites was developed to explain this phenomenon. In excellent agreement with experimental results, the model predicts that unity volume fraction of tetragonal zirconia is produced in the nanolaminate when the zirconia layer thickness is less than the radius at which a growing zirconia crystallite spontaneously transforms to the monoclinic phase. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 6061-6063 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Advances in reducing the resistance and enhancing the magnetoresistance (MR%) of the magnetic tunnel junction (MTJ) material has made it useful for magnetoresistive random access memory as well as magnetic field sensing applications. One of the most important aspects for producing the MTJ material is the method used for forming the tunnel barrier, and its impact on the properties of MTJ such as resistance and area product (RA), MR%, and RA uniformity across a large area. We have explored forming the aluminum oxide tunnel barrier with air; reactive sputtering; plasma oxidation with plasma source; plasma oxidation with power introduced from the target side; and plasma oxidation with power introduced from the substrate side. Our results show that all techniques can be made to work. Plasma oxidation is favored due to its simplicity and manufacturing compatibility. It was also discovered that different oxidation methods used in this study caused little difference in MTJ resistance uniformity. The latter is mainly determined by the Al metal-thickness uniformity. Modeling based on Simmons' theory supports our experimental finding. This illustrates the importance in improving Al metal-film uniformity for producing MTJ with ultra-uniform resistance. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...