Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 16 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The mole rat (Spalax ehrenbergi) is a subterranean rodent whose adaptations to its fossorial life include an extremely reduced peripheral visual system and an auditory system suited for the perception of vibratory stimuli. We have previously shown that in this blind rodent the dorsal lateral geniculate nucleus, the primary visual thalamic nucleus of sighted mammals, is activated by auditory stimuli. In this report we focus on the manifestation of this cross-modal compensation at the cortical level. Cyto- and myeloarchitectural analyses of the occipital area showed that despite the almost total blindness of the mole rat this area has retained the organization of a typical mammalian primary visual cortex. Application of the metabolic marker 2-deoxyglucose and electrophysiological recording of evoked field potentials and single-unit activity disclosed that a considerable part of this area is activated by auditory stimuli. Previous neuronal tracing studies had revealed the origin of the bulk of this auditory input to be the dorsal lateral geniculate nucleus which itself receives auditory input from the inferior colliculus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Potential auditory compensation in neonatally bilaterally enucleated Syrian hamsters was explored anatomically, electrophysiologically and behaviourally. Gross morphology of the visual cortex appeared normal and no obvious cytoarchitectural malformation was discerned. However, enucleation induced a significant increase in the spontaneous firing rate of visual cortex cells. Further, auditory stimuli elicited field potentials and single unit responses in the visual cortex of enucleated, but not normal, animals. About 63% of the cells isolated in the visual cortex of 16 enucleated hamsters responded to at least one type of auditory stimulus. Most of the responses were less vigorous and less time-locked than those of auditory cortex cells, and thresholds were typically higher. Projection tracing with WGA–HRP disclosed reciprocal connections between the visual cortex and the dorsal lateral geniculate nucleus in both intact and enucleated animals. However, in the enucleated animals retrogradely labelled cells were also found in the inferior colliculus, the major midbrain auditory nucleus. Behaviourally determined auditory sensitivity across the hearing range did not differ between enucleated and intact hamsters. Minimum audible angle, as determined by a conditioned suppression task, ranged from around 17 to 22°, with no significant difference between normal and enucleated animals. The two groups also did not differ with regard to the direction of their unconditioned head orientating response to intermittent noise. However, the enucleated animals showed a more vigorous response and were slower to habituate to the noise. These results show that bilateral enucleation of newborn hamsters results in auditory activation of visual targets, in addition to the typical activation of the intact auditory pathway. Behaviourally it appears that enucleated hamsters, compared with their normal littermates, are slower to habituate in their response to an unexpected source of sound.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Auditory activation of the primary visual cortex (area 17) and two extrastriate visual cortical areas – the anterolateral lateral suprasylvian area (ALLS) and anteromedial lateral suprasylvian area (AMLS), was investigated in visually impaired cats. Impairment was accomplished shortly after birth by bilateral eyelid suturing (binocularly deprived cats, BD) or bilateral enucleation (binocularly enucleated cats, BE). In BE cats, the optic nerve and chiasm were entirely degenerated. No cortical atrophy or cytoarchitectural malformation was noticed in either BD or BE cats. In both normal and impaired cats we found auditory-responsive cells in the ALLS and AMLS, areas that are considered strictly visual. The most remarkable finding was an increase in the relative number of these auditory cells in the BD and BE cats, which was more prominent in the latter. Some auditory-responsive cells were also found in area 17 of BE cats. On the basis of formal calculation, it is tempting to suggest that the increase in relative number of auditory cells in these areas reflects the transformation of all the visual cells in the ALLS of BD and BE cats into auditory cells. In BE cats, all bimodal cells and an appreciable percentage of non-responsive cells also had transformed to auditory cells. In the AMLS of BD cats, it is primarily the bimodal cells that become auditory cells, whereas in BE cats all the visual and bimodal cells as well as non-responsive cells undergo this transformation. This assumption, however, is one possible interpretation of our results but not the only one. Other modes of neuronal plasticity that might yield similar results in the visually deprived cats can not be ruled out.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1435-1803
    Keywords: Key words Low energy laser irradiation – ventricular dilatation – cardioprotection – sarofotoxin-b – mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: Low energy laser irradiation has been shown to accelerate various biological processes, including regeneration of injured tissues. In the present work we studied the effect of low energy laser irradiation on ischemic mice hearts, following administration of sarafotoxin-b, a powerful vasoconstrictor peptide of the endothelin/sarafotoxin family. Methods: Immediately after injection of the toxin and two days later, hearts were exposed to low energy laser irradiation. Eight days after the injection the mice were sacrificed and their hearts were processed for light and electron microscopy. Results:Sarafotoxin-b induced an approximate 2-fold increase in the relative cavity volume of the left ventricle. Low energy laser irradiation of the sarafotoxin-injected mice caused a significant decrease (62%) in the left ventricular dilatation. Electron microscopy of the sarafotoxin-injected mice hearts revealed that the extent of formation of large vacuoles in the cytoplasm of the cardiomyocytes as well as disorganization of the myofibrils were much higher than in the laser irradiated mice. Conclusions: Our study indicates that low energy laser irradiation enhanced recovery of the damaged cardiomyocytes from the ischemia induced by sarafotoxin-b.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 88 (1976), S. 145-157 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The electrical properties of developing nonfertilized oocytes of Locusta migratoria were studied, using intracellular microelectrodes. The inseries potential of the combined oomembrane and of the follicular cells was about 20 mV in the youngest oocytes. It increased as the oocytes developed and it reached a plateau of about 50 mV before full maturation, generally four to seven oocytes away from the fully-developed terminal oocyte. Current-voltage relations were always linear for hyperpolarizing currents. Most oocytes exhibited, however, rectification to outward current. Input resistance values varied with oocyte size from about 5 × 106 ohm for young oocytes to about 0.2 × 106 ohm for the more developed ones. Some oocytes displayed a transient depolarization on turning off a hyperpolarizing step of current. This depolarization was not correlated with the size of the oocyte or with any observed morphological feature. Any two adjacent oocytes were electrotonically coupled. A single ovariole thus represented a longitudinal chain of developing oocytes which were connected electrically. This was supported by electron microscope observations which revealed junctions partially impermeable to lanthanum and gap junctions between the follicular cells themselves and between follicular cells and oocytes. The coupling coefficient was dependent on the direction of current flow. The attenuation of voltage along an ovariole was always greater at the distal than at the proximal side.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...