Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 279-286 
    ISSN: 1476-5535
    Keywords: Crude oil ; Biodegradation ; Nitrogen source ; Respirometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, but not in those supplied with KNO3. The ammonia-associated pH decline was severe enough to completely stop oil biodegradation as measured by oxygen uptake. Regular adjustment of the culture pH allowed oil biodegradation to proceed normally. A small amount of nitrate accumulated in all cultures that contained ammonia, but nitrification accounted for less than 5% of the acid that was observed. The nitrification inhibitor, nitrapyrin, had no effect on the production of nitrate or acid in ammonia-containing cultures. When the culture pH was controlled, either by regular adjustment of the culture pH or by supplying adequate buffering capacity in the growth medium, the rate and extent of oil biodegradation were similar in NH4Cl- and KNO3-containing cultures. the lag time was shorter in pH-controlled cultures supplied with ammonia than in nitrate-containing cultures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 6 (1995), S. 295-308 
    ISSN: 1572-9729
    Keywords: reductive dehalogenation ; kinetics ; modeling ; substrate interactions ; cometabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9729
    Keywords: 1,1,1-trichloroethane ; anaerobic ; electron donor ; electron acceptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of primary electron-donor and electron-acceptor substrates on the kinetics of TCA biodegradation in sulfate-reducing and methanogenic biofilm reactors are presented. Of the common anaerobic electron-donor substrates that were tested, only formate stimulated the TCA biodegradation rate in both reactors. In the sulfate-reducing reactor, glucose also stimulated the reaction rate. The effects of formate and sulfate on TCA biodegradation kinetics were analyzed using a model for primary substrate effects on reductive dehalogenation. Although some differences between the model and the data are evident, the observed responses of the TCA degradation rate to formate and sulfate were consistent with the model. Formate stimulated the TCA degradation rate in both reactors over the entire range of TCA concentrations that were studied (from 50 μg TCA/L to 100 mg TCA/L). The largest effects occurred at high TCA concentrations, where the dehalogenation kinetics were zero order. Sulfate inhibited the first-order TCA degradation rate in the sulfate-reducing reactor, but not in the methanogenic reactor. Molybdate, which is a selective inhibitor of sulfate reduction, stimulated the TCA removal rate in the sulfate-reducing reactor, but had no effect in the methanogenic reactor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...