Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography A 514 (1990), S. 287-292 
    ISSN: 0021-9673
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Analytica Chimica Acta 260 (1992), S. 75-81 
    ISSN: 0003-2670
    Keywords: Forgetting factor algorithm ; Kalman filter ; Pharmaceuticals ; Spectrophotometry
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1803
    Keywords: Magnesium ; myocardium ; reperfusion ; secondarycardioplegia ; 31 P NMRspectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study investigated whether increasing the magnesium concentration during secondary cardioplegia improves postischemic myocardial recovery. Twenty-four isolated pig hearts were divided into four groups. All hearts were initially subjected to control perfusion with modified Krebs-Henseleit solution for 30 min, followed by a single infusion of St. Thomas' solution #2. The hearts were then maintained without perfusion at 12°C for 4h. Following this hypothermic preservation, the hearts in group I were reperfused with modified Krebs-Henseleit solution for 50 min, while hearts in group II and III were reperfused with a secondary cardioplegic solution containing 16 or 0 mmol/L magnesium, respectively, for 20 min followed by 30 min of perfusion with modified Krebs-Henseleit solution. In group IV, the hearts were initially reperfused with Krebs-Henseleit solution containing 16 mmol/L potassium for 20 min, followed by 30 min of reperfusion with modified Krebs-Henseleit solution. The changes in high-energy phosphates and intracellular pH were monitored throughout the experiments using31P nuclear magnetic resonance (NMR) spectroscopy. Heart rate, left-ventricular systolic developed pressure, and rates of pressure increase and decrease were measured during control perfusion and reperfusion to calculate the percent contractile functional recovery. Needle biopsies for measurement of energy metabolites with high performance liquid chromatography were performed at the end of preservation and reperfusion to confirm the NMR measurements. All six hearts in group I showed significantly less recovery of contractile function during reperfusion when compared to the hearts in groups II, III, IV (p〈0.05). There was no difference in either recovery of metabolism or mechanical function among the latter three groups of hearts. None of hearts in groups II, III, and IV showed ventricular fibrillation, which occurred in all six hearts of group I upon reperfusion. The results suggest that a short period of re-arrest perfusion following ischemia (“secondary cardioplegia”) improves postischemic contractile functional recovery and prevents reperfusion-induced ventricular fibrillation. Increased magnesium concentration in the secondary cardioplegia did not provide additional benefit to the ischemic myocardium, possibly due to the low permeability of the sarcolemmal membrane to magnesium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1435-1803
    Keywords: Cardioplegic ischemia ; intracellular Na+ ; energy metabolism ; contractile function ; oxygen consumption ; pig and rat hearts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The purpose of the study was to compare the role of Na ions in the damage caused by cardioplegic ischemia in fast (rat) and slow (pig) hearts. Changes in intracellular Na+ (Na+ i), high energy phosphates, and contractile function were assessed during ischemia (36°C) and reperfusion in KCl-arrested perfused hearts using31P-NMR and shift reagent (DyTTHA3−)-aided23Na-NMR spectroscopy. In the pig hearts the rates of decrease of phosphocreatine (PCr), ATP and intracellular pH (pHi) were 3–4 times slower than the rates observed in the rat hearts. In the pig hearts PCr was observable (∼10%) during first 80 min of the ischemic period (90 min). Comparable decreases in ATP (32.0±6 vs. 38±15% of initial) and pHi, (to 6.14±0.06 vs. 6.10±0.15) observed after 90 and 20 min ischemia in pig and rat hearts, respectively, were associated with a smaller Na+ i increase in the pig hearts (to 175±31%) than in the rat hearts (to 368±62%). This Na+ increase in the rat hearts preceded development of ischemic contracture (41±6 mmHg at 23.6±0.7 min) while no contracture was observed in pig hearts. Reperfusion of the rat hearts (at 30 min ischemia) was followed by partial recovery of PCr (44±3%) and Na+ i (234±69%) and poorer recovery of the pressure-rate product (PRP, 9±4%) and end-diastolic pressure (EDP, 72±5 mm Hg) compared to the pig hearts (PCr, 106±25%; Na+ i, 82±17%; PRP, 24±3%; EDP, 4.6±2.5 mmHg). The loss of function in the pig hearts was reversed by increasing Ca++ in the perfusate from 1 to 2.3 mM and resulted in a rise in both PRP and oxygen consumption rate, V(O2), from 24±3.3 to 64.5±5.8% and from 55±10 to 74±10% of the control levels, respectively. The PRP/ΔV(O2) ratio was halved in the post-ischemic pig hearts and returned to the pre-ischemic level following Ca++ stimulation. It is suggested that the higher stability of Na+ homeostasis to ischemic stress in the pig heart may result from: 1) a lower ratio of the rate of ATP hydrolysis to glycolytic ATP production; 2) differences in the kinetic properties of the Na+ transporters. Reduced Na+ accumulation during ischemia and reperfusion is benefical for metabolic and functional preservation of cardiomyocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...