Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A novel porous glass-ceramic with a skeleton of CuTi2(PO4)3 was prepared by controlled crystallization of a glass and subsequent chemical leaching of the resulting dense glass-ceramic. A volume-crystallized dense glass-ceramic composed of CuTi2(PO4)3 and Cu3(PO4)2 whose surface was covered by a CuO thin layer was prepared by reheating a glass with a nominal composition of 50CuO·20TiO230P2O5 (in mol%) glass in air. When the resultant glass-ceramic was leached with dilute H2SO4, Cu3(PO4)2 and CuO phases were dissolved out selectively, leaving a crystalline CuTi2(PO4)3 skeleton. The specific surface area and the average pore radius of the porous glass-ceramic obtained were approximately 45 m2g-1 and 9 nm, respectively. The porous glass-ceramic showed catalytic activity in the conversion reaction of propene into acrolein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 3297-3299 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An electrochemical device for sensing oxygen at low temperature, e.g., 100 °C, was developed by using fast Cu+-conducting ceramics. As the solid electrolyte, a dense glass ceramic consisting of crystalline CuTi2(PO4)3 and Cu3(PO4)2 phases, which three-dimensionally interlock with each other, has been successfully prepared by the controlled crystallization of the glass in the Cu–Ti–P–O system. The electromotive force generated between the electrodes showed a good Nernstian response to the partial pressure of oxygen even at a relatively low temperature such as 100 °C. The mechanism for oxygen sensing was discussed with regard to the fast Cu+ ion conductivity and the redox reaction between Cu+ ion in the dense glass ceramic and oxygen gas. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A novel porous glass-ceramic with a skeleton of a NASICON-type copper(II) titanium phosphate was prepared via the controlled crystallization of a glass and the subsequent chemical leaching of the resulting dense glass-ceramic. A volume-crystallized dense glass-ceramic comprised of CuTi2(PO4)3 and Cu3(PO4)2, whose surface was covered by a thin layer of CuO, was prepared by reheating a glass with a nominal composition of 50CuO20TiO230P2O5 (in mol%) in air. When the resulting glass-ceramic was leached with dilute HCl, the Cu3(PO4)2 and CuO phases were dissolved out selectively, and a cuprous NASICON crystal of CuTi2(PO4)3 was converted to its cupric type, CuTi4(PO4)6, which was left as a skeleton of the porous materials. The specific surface area and the average pore radius of the porous glass-ceramic obtained were ∼70 m2/g and ∼7 nm, respectively. The porous glass-ceramic showed high catalytic activities for the dehydration of 2-propanol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...