Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 182 (1992), S. 767-772 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words Calcium transients ; Phorbol esters ; Protein kinase C ; Skeletal muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  By recording the calcium transients evoked by voltage-clamp depolarizing pulse with arsenazo III as a calcium indicator, it has been shown that 1 µmol/l phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) agonist, causes a transient potentiation and then a depression of the calcium transients of twitch muscle fibers in frogs. PDBu also produces an initial translocation and activation of PKC, which is followed by a down-regulation. To find out whether the effect of PDBu on the calcium transients depends on PKC, a correlated study of the effect of phorbol esters on calcium transients and PKC activity was performed. The calcium transients and PKC activity were similarly affected by PDBu in ordinary and cold-accommodated frogs, but the effects occurred more quickly in the latter. However, they still changed in parallel as in ordinary frogs. 1 or 10 µmol/l, 4-α-phorbol, a PKC-inactive analogue of phorbol ester, caused a partial depression of the calcium transients in cold-accommodated frogs, while PKC activity was not affected. Moreover, the transient potentiation of the calcium transients induced by 1 µmol/l PDBu could be antagonized by the PKC inhibitors 10 µmol/l chelerythrine chloride or 10 µmol/l polymyxin B (PMB). All these results suggest that: (1) the transient potentiation of calcium transients induced by PDBu is caused by activation of PKC; (2) phorbol ester can depress the calcium transients by a mechanism that is independent of PKC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 428 (1994), S. 224-231 
    ISSN: 1432-2013
    Keywords: Skeletal muscle ; Excitation-contraction coupling ; Protein kinase C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Intracellular Ca2+ transients were recorded from frog twitch muscle fibres in response to voltage-clamp depolarizing pulses, using arsenazo III as an intracellular Ca2+ indicator. The effect of the activation of protein kinase C (PKC) on the Ca2+ transients was studied. With 1 μM phorbol 12,13-dibutyrate (PDBu), a PKC activator, the peak of the Ca2+ transients increased to about 120% of control during the first 0.5 h, and then decreased gradually to a plateau of 44% of control within the following 2 h. This effect of PDBu could be alleviated significantly by PKC inhibitors, 10 μM polymyxin B (PMB) or 30 μM 1-(5-isoquinolinylsulphonyl)-2-methyl-piperazine (H-7). Moreover, PDBu caused an upward shift of the strength/duration curve. In Li+-loaded muscle fibres the Ca2+ transients could not fully recover after 80 mM K+ exposure for 15 min, while the post-K+ Ca2+ transients could be completely restored in the fibres not loaded with Li+. In the presence of 10 μM PMB or 30 μM H-7, a full restoration of the post-K+ Ca2+ transients was seen in Li+-loaded fibres. PMB supplemented after high-K+ exposure also could result in a complete recovery of the post-K+ Ca2+ transients in Li+-loaded fibres. The role of PKC in modulating excitation-contraction coupling in frog twitch muscle fibres is clearly indicated, but the mechanism(s) and physiological significance remain to be established.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: M. soleus ; M. extensor digitorum longus ; Neuromuscular junction ; Motor end-plate ; Synaptic membranes ; Transformation ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary In normal (untreated) rats the mean length ratio of postsynaptic to presynaptic membrane was 2.7±0.8 for neuromuscular junctions of slow-twitch soleus muscle fibres and 4.2±1.0 for neuromuscular junctions of fast-twitch extensor digitorum longus muscle fibres; this difference was significant (P〈0.001). After experimental double innervation by fast and slow muscle nerves for four months, the ratio was (1) 2.9±0.8 for the original slow-twitch fibre end-plate and 2.8±0.8 for the newly established one, both not significantly different from that of the normal slow-twitch fibres; and (2) 2.2±0.5 for the original fast-twitch fibre end-plate and 2.2±0.7 for the newly established one, both significantly smaller than that of the normal fast-twitch fibres (P〈0.001). This means that the double innervated slow-twitch muscle fibres retained their original neuromuscular junction type, whereas the doubly-innervated fast-twitch muscle fibres underwent a dramatic transformation of their neuromuscular junction from the fast-muscle to the slow-muscle type. In both doubly innervated fibres, the ultrastructural characteristics of neuromuscular junctions, whether altered or not, were identical at both end-plate regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...