Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 4929-4937 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron and negative ion densities were measured in inductively coupled discharges containing C4F8. In addition, the identity of the negative ions in C2F6, CHF3, and C4F8 containing discharges was investigated with a photodetachment experiment utilizing a microwave resonant cavity structure. To investigate the influence of surface material, the rf-biased electrode was covered with a silicon wafer or a fused silica (SiO2) wafer. Line-integrated electron density was determined using a microwave interferometer, and absolute negative ion densities in the center of the plasma were inferred using laser photodetachment spectroscopy. Voltage and current at the induction coil and rf-biased electrode were also measured for both surfaces as functions of induction coil power, pressure, and rf bias. For the range of induction powers, pressures, and bias power investigated, the electron density peaked at 6×1012 cm−2 (line integrated), or approximately 6×1011 cm−3. The negative ion density peaked at approximately 2.2×1011 cm−3. In most cases, the trends in the electron and negative ion densities were independent of the wafer material. However, a maximum in the negative ion density as a function of induction coil power was observed above a silicon wafer. The maximum is attributed to a power-dependent change in the density of one or more of the potential negative ion precursor species. A microwave resonant cavity structure was developed to identify the negative ions using laser photodetachment spectroscopy. The technique was demonstrated for inductively coupled discharges containing C4F8, C2F6, and CHF3. Scanning the laser wavelength over the range of the F− photodetachment energy indicated that while the dominant negative ion appeared to be F−, weak evidence for other molecular negative ions was observed. Unlike traditional microwave cavity techniques, this method offers the possibility of spatial resolution. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present an experimental study of ion fluxes, energy distributions, and angular distributions inside surface features on radio frequency-biased wafers in high-density, inductively driven discharges in argon. Specifically, we present data on ion distributions at the bottom of 100-μm-square, 400-μm-deep "holes" in the wafer. Transmission of ions to the bottom of the holes increases with increasing ion energy and decreases as the sheath size becomes comparable to the hole size. Ion energy distributions at the bottom of the holes are narrower than distributions on the flat wafer surface. The flux of ions remains normal to the wafer surface over most of the hole area but the flux of ions within 6 μm of the wall is angled towards the wall. The observed trends are consistent with effects expected due to bowing of the plasma sheath around the surface features on the wafer. Scattering of ions off sidewalls contributes at most, only a small part of the ion flux reaching the bottom of the hole. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...