Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 16 (1977), S. 4862-4871 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Periodontology 2000 6 (1993), S. 0 
    ISSN: 1600-0757
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Melatonin induces pigment granule aggregation in amphibian melanophores. In the studies reported here, we have used fluorescence microscopic techniques to test the hypothesis that such melatonin-induced pigment movement is correlated with alterations in either the actin or tubulin cytoskeletal patterns of cultured Xenopus melanophores. In general, the cytoplasmic domains of the cultured melanophores were flat and thin except in the perinuclear region (especially when the pigment was aggregated). The microtubules and microfilaments were usually found in the same focal plane; however, on occasion, microfilaments were closer to the substratum. Microtubules were arranged in arrays radiating from what are presumed to be cytocenters. A small percentage of the melanophores were very large, had actin-rich circular perimeters and did not respond as rapidly to melatonin treatment as did the other melanophores. Melanophores with either aggregated or dispersed melanosomes had low intensity rhodamine-phalloidin staining of actin filaments compared to nonpigmented cells, whereas the FITC anti-tubulin intensities were comparable in magnitude to that seen in nonpigmented cells. When cells were fixed prior to complete melatonin-induced pigment granule aggregation there was no abrupt diminution in either the tubulin or actin staining at the boundary between pigment granule-rich and pigment granule-poor cytoplasmic domains. Nor could the actin and tubulin patterns in cells with partially aggregated melanosomes be reliably distinguished from those in melanophores in which the melanosomes were either completely dispersed or completely aggregated. These data argue against the hypothesis that melatonin causes consistent large-scale rearrangements of tubulin and actin polymers as it induces pigment aggregation in Xenopus melanophores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 121-128 
    ISSN: 0886-1544
    Keywords: axonal transport ; ATP ; nucleotides ; saltatory movement ; dynein ; video microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In a permeabilized axon model, exogenous ATP can reactivate intraaxonal saltatory organelle movements (microscopically visible manifestations of fast axonal transport). We have studied the dependence of the reactivated movements on the ATP concentration and have also examined the nucleotide specificity of the reactivation. Organelle transport was visualized in isolated lobster giant motor axons using Nomarski optics and video microscopy. The axons were permeabilized with saponin, and movement was reactivated with ATP or other nucleotides. Some slight movement was seen with ATP concentrations as low as 10 μM. The velocity and frequency of the reactivated transport increased with increasing ATP concentrations up to about 5 mM. Movement was also reactivated by deoxyadenosine triphosphate, but not by AMP-PNP (a nonhydrolyzable ATP analogue), ADP, or AMP. Although other nucleotides (CTP, GTP, UTP, ITP) could reactivate transport, movement equivalent to that produced by 0.1 mM ATP was only seen with tenfold or greater concentrations of the other nucleotides. This pattern of specificity is consistent with the hypothesis that a dynein-like ATPase, rather than a myosin, is involved in fast axonal transport.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0886-1544
    Keywords: actin ; rhodamine-phalloidin ; cell shape and movement ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The amoeboflagellate transformation in Physarum polycephalum involves a series of dramatic changes in cell shape and motile behavior. This report describes the morphological and behavioral changes through which a synchronously transforming population of cells passes, stressing that, although there are a series of distinguishable stages, cells at all stages display striking plasticity. Our previous studies showed that amoeboflagellates transiently display a flattened motile extension - the ridge - that projects from a specific location on the cell surface and contains a laminar core densely packed with a series of crisscrossing arrays of actin microfilaments. Details are presented here concerning the movements of the ridge as well as the dynamics of ridge formation and disassembly in relation to other morphogenetic events of the transformation. The ridge forms at about the same time as transforming cells begin to elongate, propagates undulations parallel to the long axis of the cell as the transformation proceeds, and disassembles late in the transformation. Staining of fixed cells with the fluorescent probe rhodaminephalloidin shows that the actin of amoeboid cells is strikingly redistributed as the transformation proceeds. Amoeboflagellates contain most of the stainable actin in the ridge and in a ventral-posterior spot that may be a site of cell-substratum adhesion. These results provide additional insights into the possible functions of the ridge and the roles of actin during the amoeboflagellate transformation.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...