Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 90 (1998), S. 145-158 
    ISSN: 1572-9613
    Keywords: Fluid dynamics ; deformable membrane ; wed vibration ; hydrodynamic forces ; Newtonian dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The lattice Boltzmann cellular automaton method has been successfully extended for analysis of fluid interactions with a deformable membrane or web. The hydrodynamic forces on the solid web are obtained through computation of the fluid flow stress at the moving boundary using the lattice Boltzmann method. Analysis of solid boundary deformation or vibration due to hydrodynamic force is based on Newtonian dynamics and a molecular dynamic type approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 81 (1995), S. 49-61 
    ISSN: 1572-9613
    Keywords: Lattice Boltzmann method ; suspensions ; boundary conditions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The lattice Boltzmann method, an alternative approach to solving a fluid flow system, is used to analyze the dynamics of particles suspended in fluid. The interaction rule between the fluid and the suspended particles is developed for real suspensions where the particle boundaries are treated as no-slip impermeable surfaces. This method correctly and accurately determines the dynamics of single particles and multi-particles suspended in the fluid. With this method, computational time scales linearly with the number of suspensions,N, a significant advantage over other computational techniques which solve the continuum mechanics equations, where the computational time scales asN 3. Also, this method solves the full momentum equations, including the inertia terms, and therefore is not limited to low particle Reynolds number.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 1153-1170 
    ISSN: 0271-2091
    Keywords: thin film stability ; volume-of-fluid method ; free surface flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The volume-of-fluid (VOF) method is a simple and robust technique for simulating free surface flows with large deformations and intersecting free surfaces. Earlier implementations used Laplace's formula for the normal stress boundary condition at the interface between the liquid and vapour phases. We have expanded the interfacial boundary conditions to include the viscous component of the normal stress in the liquid phase and, in a limited manner, to allow the pressure in the vapour phase to vary. Included are sample computations that show the accuracy of added third-order-accurate differencing schemes for the convective terms in the Navier-Stokes equation (NSE), the viscous terms in the normal stress at the interface and the solution of potential flow in the vapour phase coupled with the solution of the NSE in the liquid phase. With these modifications we show that the VOF method can accurately predict the instability of a thin viscous sheet flowing through a stagnant vapour phase.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...